PUBLIC HEALTH REPORTS

STUDY OF THE EFFECT OF DEGREE OF ILLUMINATION ON WORKING SPEED OF LETTER SEPARATORS IN A POST OFIICE.

By Janes E. Ives, Physicist, Office of Industrial Hygiene and Sanitation, United States Public Health Service.

OBJECT AND METHOD OF THE STLDY.

In connection with the studies which the United States Public Health Service has been making relative to the protection and care of the eyes of industrial workers, the question has frequently arisen as to the degree of illumination that is necessary in order that work of a certain character involving the eyesight may be performed with the least strain on the eyes. It is to be assumed that, other things being equal, the degree of illumination best for the eyes is that under which the work in question can be performed with the greatest ease. The most nadural measure of the ease with which work can be performed is the speed of working, or, in other words, the rate of production. It therefore becomes important, from the standpoint of the protection and care of the eyes, to determine in what manner the rate of production in industry depends upon the degree of illumination under which work is performed.

The study discussed in this report was made during the year 1923 in the New York City Hall post office. It was suggested by the recent survey of the illumination of the New York post offices, which was made by the Office of Industrial Hygiene and Sanitation, United States Public Health Service, as described in Public Health Bulletin No. 140, in which survey it was found that there was a marked increase in the number of test cards sorted per minute when the illumination was increased from 3.6 to 8 foot-candles. Since the tests in this survey were made with specially prepared cards, it was thought desirable to find out whether the same increase would occur when the clerks handled the ordinary letter mail, and whether this increase would be maintained if the increased illumination were maintained.

The study was authorized by the First Assistant Postmaster General, Mr. John H. Bartlett, and was carried on jointly by the Post Office Department, the Supervising Architect's Office of the Treasury

Department, and the Office of Industrial Hygiene and Sanitation of the United States Public Health Service. It was planned by Mr. S. W. Farnsworth, general superintendent of engineering in the Post Office Department, Mr. Chester C. Rausch, assistant director of service relations in the Post Office Department; Mr. Clarence A. Peterson, of the Supervising Architect's Office, Treasury Department; and the writer. The superintendent of the City Hall post office, Mr. G. B. Cutler, carried out the production tests and made the investigation possible by his cordial and enthusiastic cooperation.
After consultation it was decided to make the stady by weighing the total letter mail sorted by a group of eight clerks at certain separation cases, every half hour, from $1 \mathrm{p} . \mathrm{m}$. to $4 \mathrm{p} . \mathrm{m}$., and by another group of eight clerks, from $4 \mathrm{p} . \mathrm{m}$. to 9 p . m., for four consecutive days under a given illumination. It was decided to make tests simultaneously in the dispatching division on the mezzanine floor of the post office, and in the delivery division on the first floor. The tests on each floor were made at the same set of letter cases.

The sorting process carried on in the tests in the dispatching division was a primary one, involving 34 separations; that carried on in the delivery division was a secondary one, involving 50 separations. The nature of the work of letter separation, the shape and size of the cases used in the work, and the location and surroundings of these cases in the New York City Hall post office have been described in detail in Public Health Bulletin No. 140. The mail sorted in the tests included post cards, and large and small letters.

Six series of tests were made, in January, February, June, September, November, and December, respectively.

As the study proceeded, it was not found possible to give four consecutive days to each series, so that each of the three later series of tests covered only three days; it was not always possible to use the same clerks on the successive days of the same test, although this was generally done, and it was not always possible to keep eight clerks on a test, the number of clerks available varying from four to nine, although eight was the usual number. No tests were made on Saturdays nor on holidays nor during periods in which the post office was unusually busy. The three earlier series were made on Tuesday, Wednesday, Thursday, and Friday, and the three later, on Monday, Tuestay, and Wednesday. A record was kept for each half-hour period of the number of clerks working during that period. The total time spent in work by the group was recorded in terms of manhours, in hours and minutes. For instance, if 8 clerks worked for half an hour, 4 man-hours were recorded for the group for that half hour; if only 7 clerks worked during the half hour, $31 / 2$ man-hours, or 3 hours and 30 minutes, were recorded for the group.

The clerks worked in three shifts of eight hours each, and the test for each group was made during the first part of the shift, except for the group on the first floor, working from 1 to 4 p. m., for which the test was made during the latter part of the shift.

The tests were made almost entirely under artificial light, there being very little natural light at the places where they were carried on. In the four later series of tests, readings of the illumination were taken on each side of each aisle, throughout its length, both directly under and between the units. The average of these readings was taken as the illumination under which the test was made. The measurements of the illumination were made with a MacBeth illuminometer. In the later tests the illumination on the working plane was fairly uniform, the deviation at any point being seldom greater than 20 per cent of the average value. In the two earlier series of tests the values given for the average illumination are less reliable. It is believed, however, that they fairly represent the illumination that prevailed when the tests were made.

RESULTS OF THE STUDY.

The results of the production tests, in terms of pounds of mail sorted per man per hour, are recorded in Tables 1 to 18. Summaries of the mean results, with the probable error for each mean, are given in Tables 19 and 20.

The first tests were made from January 16 to 19, under the lighting installations which had been in use for some time, and which gave an illumination on each floor of about 3.3 foot-candles.

After these tests had been made, $16-i n c h$ Trojan units, made of opal glass and totally inclosed, were installed in the aisles, with 200-watt Mazda C lamps on the mezzanine floor, and 150 -watt Mazda O lamps on the first floor, giving an illumination of 7.7 footcandles on the mezzanine floor, and of about 4.3 foot-candles on the first floor. On the mezzanine floor the Trojan units were hung in two rows in the aisle, with the units in each row 10 feet apart, the bottom of each unit 10 feet above the floor, and its center 1 foot in front of the letter separation case. On the first floor the Trojan units were suspended from the existing outlets, in two rows in the aisle, the outlets in each row being about 11 feet apart. After the clerks had worked under these installations for about a month, the second series of tests was made on each floor from February 13 to 16. The clerks then continued to work under these installations until the third series of tests was made from June 11 to 14.

On July 25 the illuminations under these installations were again measured and were found to give 7.5 foot-candles on the mezzanine floor and 4.3 foot-candles on the first floor. The lamps were then reduced to 150 watts on the mezzanine floor and 100 watts on the
first floor, the illumination on the two floors falling to 6 and 3.5 footcandles, respectively. It was not possible, however, to make tests under these new intensities of illumination, since, shortly after this date, the post office was repainted, the ceilings and the upper part of the walls being done in white, and the lower part of the walls in black or dark gray. Measurements of the illumination on September 15 showed that the repainting had had the effect of raising the illumination under the 150 and 100 watt lamps to approximately what it was formerly under the 200 and 150 watt lamps, namely, to 7.2 foot-candles on the mezzanine floor and 4.6 foot-candles on the first floor. The fourth series of tests was made under these installations from September 10 to 12.
The clerks continued to work under these installations until November 12, when the fifth series of tests was begun. Measurements of the illumination showed that it had apparently deteriorated to 6.5 foot-candles on the mezzanine floor and to 4.3 foot-candles on the first floor.
The wattage of the lamps was then lowered to 100 watts on the mezzanine floor, and raised to 150 watts on the first floor, giving an illumination of 3.8 foot-candles on the mezzanine floor, and 5.9 foot-candles on the first floor. The clerks then worked under these installations until December 10, when the sixth, and last, series of tests was begun.

The results of all the tests, summarized in Tables 19 and 20, show that the rate of production ranged from 30.1 to 34.2 pounds per man per hour in the dispatching division, and from 14.4 to 17.3 pounds per man per hour in the delivery division. The average rate of production in the delivery division was, therefore, only about half that in the dispatching division.

The causes of this difference in the production rate for the two divisions are very interesting. It is evident that the difference depends, other things being equal, upon the number and nature of the separations that have to be made. It is evident that it would take longer to handle each individual letter in the delivery division, with 50 separations, than in the dispatching division, with 34 separations, since in the delivery division the average distance traveled by the hand is greater, and the clerk must look at the name and number of the street on the envelope and decide in what part of the city the letter is to be delivered. In the dispatching division the average distance traveled by the hand is less, and the clerk separates the letters only into a few,well-known broad geographical divisions.
The results given in the tables seem to show that, after a higher illumination had been installed, the production rate had a tendency to increase during the course of from two to four months, even
though there was a slight decrease of illumination due to deterioration of the lamps, and to other causes.

It was originally intended (1) to find the rate of production under the old illumination; (2) to increase the illumination so as to find the change in the rate of production; (3) to maintain the illumination constant for a while, in order to determine whether there was any change in the rate of production-either an increase or a decreasewith the lapse of time; (4) to decrease the illumination; and (5) still further to increase it or decrease it; giving tests under four different intensities of illumination in each division. But, as already explained, the repainting of the post office had the effect of reducing the number of illuminations used practically to three, since, in both divisions, the illuminations in the February, June, September, and November tests were, on account of the repainting, approximately the same. If we take the mean production rate and the mean illumination for these four months in the dispatching division we get a mean production rate of 33.7 pounds per man per hour for a mean illumination of 7.2 foot candles; and, in the delivery division, of 16.2 pounds per man per hour for 4.4 foot candles. The results in the dispatching division give, in the order of time in which they were obtained, average production rates of $30.1,33.7$, and 32.1 pounds per man per hour for corresponding illuminations of 3.3, 7.2 and 3.8, foot candles, or an increase of 12 per cent in the production rate in going from 3.3 to 7.2 foot candles, and a decrease of 4.7 per cent in going from 7.2 to 3.8 foot candles. In the delivery division we obtain average production rates of $14.4,16.2$, and 17.3 pounds per man per hour for corresponding illuminations of $3.3,4.4$, and 5.9 foot candles, or an increase in the production rate of 12.5 per cent in going from 3.3 to 4.4 foot candles, and a further increase of 6.8 per cent in going from 4.4 to 5.9 foot candles.

The results of the last two tests on each floor are very marked. As will be seen by the tables, a test was made from November 12 to 14 under 150 -watt lamps in the dispatching division, and under 100watt lamps in the delivery division. After this test had been made, the wattage was reversed, 100 -watt lamps being installed in the dispatching division and 150 -watt lamps in the delivery division. The illuminations were correspondingly decreased from 6.5 to 3.8 foot candles in the dispatching division and increased from 4.3 to 5.9 foot candles in the delivery division. Four weeks later another test was made. In both divisions a marked change in the production rate was obtained, in the former division a decrease, and in the latter an increase.

An increase in the rate of production with improved illumination in the case of these experiments is unmistakable, and is not due to chance. For instance, from January to February there was, for the
work involving 34 separations, an increase of 3.5 pounds on the average in the rate of production, whereas the probeble error of this difference was but 0.91. Similarly for the 50 separations, the increase of 1 pound was much greater than its probable error, namely, 0.33. However, it is realized that some of the changes in the rate of production which accompany changes in illumination in the course of these experiments may well have been due to chance. This is indicated if the afternoon and evening records are studied separately; and it must be kept in mind in connection with the theoretical discussion that follows.

The results of this study appear to justify the recommendation recently made by the United States Public Health Service to the Post Office Department that the illumination on the working plane in the workrooms of the post office should be at least 8 foot candles. ${ }^{1}$

PROPOSED THEORY FOR THE RELATION OF PRODCCTION TO IKLUMINATION.

In an attempt to find a relation between the rate of production and the degree of illumination under which the work was performed, the results of the tests were plotted against the illuminations used. The graphs are shown in Figure 1, with curve 1 for 34 separations and curve 2 for 50 separations. In both cases smooth curves have been drawn through the points, leaving as many points on one side of the curve as on the other and making the sum of the negative deviations equal to the sum of the positive deviations for each curve.

To make clear the chronological order in which the tests were made, the date of each test is marked against its corresponding point on the graph.

The fact that all the points do not lie on the smooth curves is probably explained by the great fluctuations in the production rate which are shown in the tables, and which are probably largely due to fluctuations in the nature of the mail to be handled-whether cards or large or small letters-post cards weighing less than letters, and small letters less than large, making, therefore, a greater number to the pound; to fluctuations in the pressure of the work, i. e., the amount of mail that has to be sorted; to the fact that the same individuals were not used for each series of tests, introducing the personal element, to a greater or lesser degree; and to a possible lag between changes in illumination and corresponding changes in production rate. Seeming evidence of such a lag was observed in the study made by the Office of Industrial Hygiene and Sanitation, United States Public HealthService, of the illumination of the New York post office, ${ }^{2}$ and in a recent

[^0]experiment in England on the relation of illumination to coal production. ${ }^{3}$ The lag in the change in production, apparently occurring when the illumination is changed; appears to be either positive or negative according as the illumination is decreased or increasedthe production rate not rising or falling immediately to the value ultimately corresponding to a given illumination, but rising or falling to it only after the new illumination has been maintained for a certain length of time.
From an inspection of the graphs and from the fact that when the illumination is zero the production rate will be zero, it may be in-

Fig. 1.-Results of tests in the New York City Hall post office, on the relation of illumination to production, with graphs conforming to the formula $P=P_{c}(1-e-k 1)$
ferred that the curves can not be parts of logarithmic curves, parabolas, or hyperbolas. The shape of these curves, however, suggests the well-known curve, which, in the present case, would be expressed by the equation

$$
\begin{equation*}
P=P_{c}\left(1-e-k^{1}\right), \tag{1}
\end{equation*}
$$

where P would represent the value of the production rate in pounds per man per hour; P_{c}, a constant value which the production rate approaches as the illumination increases; e, the base of the natural system of logarithms, which is equal to 2.718; k, a constant which determines the slope of the curve, and I, the illumination in foot candles. If this equation does express the relation of production to

[^1]illumination within the ratge of illumination covered by these tests, P_{c} will represent the production under relatively high illuminations, such as the illumination in the open under daylight, or in a room which is well lighted by daylight. From the equation it would then appear that, within the range of ordinary working illuminations, say from 1 to 1,000 foot candles, either indoors or outdoors, so far as the influence of illumination alone is concerned, and apart from the deterrent influence of glare, the production rate will increase with the increase of the illumination-increasing at first very rapidly and then slowly, and approaching, at an intensity of illumination somewhere between 10 and 100 foot candles, a value which for all practical purposes may be regarded as constant, this constant value being the production rate under good daylight illumination. According to this view, within the range of ordinary working illuminations, if glare is avoided, the production rate will steadily increase with the illumination until it reaches the value for full daylight, after which it will remain practically constant as the illumination is further increased. If, however, as the illumination is increased, glare increases more rapidly than the illumination, it may happen that, owing to the deterrent effect of glare, ${ }^{4}$ a value of the illumination will be reached at which the production rate instead of increasing begins to decrease.

It will be observed that, in the formula given by equation (1), there are two constants, P_{c} and $k . \quad P_{c}$, as already explained, is the value of the production rate under good daylight illumination, and k is a constant which determines the steepness of the curve; the greater the value of k the more rapidly the curve will rise.

If P_{c} is taken equal to 1 , the function P becomes

$$
P=1-e^{-k I}
$$

In Figure 2, graphs of this function for $P_{c}=1$ have been plotted for $k=1.0,0.6,0.4,0.2$, and 0.1 , respectively.

By suitably choosing P_{c} and k, calculated values for P can be obtained which agree very closely with the values obtained from the curves 1 and 2 of Figure 1. The values obtained from the curves given in Figure 1 and the calculated values are given side by side in Table 21. The values of the constants for the calculated curves were obtained by the "cut and try" method. In order to get calculated values which would agree with values obtained from the curves, it was found to be necessary for curve 1 to take $P_{c}=33.9$ and $k=0.69$, and for curve 2 to take $P_{c}=18.6$ and $k=0.46$. It will be seen from Table 21 that the calculated values and those obtained from the experimental curves agree very closely. From the experimental curves we see that, for curve 1 , in going from 3.3 to 7.7

[^2]foot caudles, an increase in the production rate of 10.5 per cent was obtained; and that, for curve 2, in going from 3.3 to 5.9 foot candles an increase in the production rate of 18.5 per cent was obtained.

Even if the smooth curves shown in Figure 1 do not represent accurately the law governing the relation between production rate and illumination, several considerations indicate that the relation must be of this general character, since it is evident that, when the illumination is zero, the production rate will be zero; that the production rate will increase more rapidly at the lower illuminations than at the higher; and that it is likely that under abundant daylight illumination the rate of production will reach its greatest value, which will be independent, or nearly independent, of small changes in illumination. Such a relation could, of course, be expected to

Fig. 2.-Graphs of the fuaction $P=1-e^{-k}$, for different values of k
hold only within the ordinary ranges of daylight, or of artificial illumination, say from one to a thousand foot candles.

From a consideration of the nature of the work performed in letter sorting, it will be evident that if P is the production rate in pounds per man per hour, we have

$$
\begin{equation*}
P=N \times w, \tag{2}
\end{equation*}
$$

where N is equal to the average number of letters handled per man per hour, and w is the average weight in pounds of a single letter. Also, if T is the average time taken by each man to handle each letter,

$$
N=\frac{1}{T}
$$

and

$$
\begin{equation*}
P=\frac{w}{T} . \tag{3}
\end{equation*}
$$

But T is made up of three parts: the average time taken by the clerk to read the address, the average time taken by him to think what pigeonhole to put the letter into, and the average time taken by him to move his hand from the position of rest to the pigeonhole and back again. These three parts of T may to a certain extent overlap each other.

The degree of illumination will probably have a much greater influence upon the first part of the time than upon the second or the third part, and as a first approximation we may assume that the values of the two latter parts are independent of the degree of illumination.
The third part of the time will depend upon the speed with which the letter separator moves his hand and upon the number and arrangement of the pigeonholes in the case. If d is the average distance to a pigeonhole and S is the average speed of the motion to and from the pigeonhole, this latter time will be equal to

$$
\frac{2 d}{S}
$$

The average distance, d, will vary with the number and size of the pigeonholes in a case. A consideration of the problem involved will show that d, for separation cases which are approximately square and in which the pigeonholes are all of the same size, will, to a close approximation, vary directly as the square root of the number of pigeonholes in the case or as the length of the side of the case.

All processes of production involve manual labor to a greater or lesser degree. In some processes the manual element is reduced to a minimum, a machine performing nearly all the work and only supervision being required. In general, however, the process of production is made up of two parts, one part dependent upon the use of the eyes and involving the illumination, and the other part not dependent upon the use of the eyes and not involving the illumination. In the case of blind people, when making brooms or caning chairs, the whole process is of the latter character.
In the case of letter separating we may divide T into two parts, T_{1} and T_{2}, where T_{1} is dependent upon the illumination and T_{2} independent of it. We may then write

$$
P=\frac{w}{T_{1}+T_{2}}
$$

T_{1}, the average time taken by the clerk to read the address, will depend upon the amount of matter to be read on the envelope, the clesrness with which it is written, the color and nature of the envelope, and the intensity of the illumination.

From equations (1) and (3) we get

$$
\begin{equation*}
T=\frac{T_{\mathrm{c}}}{1-e^{-k I}} \tag{4}
\end{equation*}
$$

where T_{0} is the value for T under high illuminations, and is assumed to be constant.

In Figure 3 this function has been plotted for $T_{\mathrm{c}}=1$ and $k=1,0.6$, and 0.4. The graphs show that as I is increased, T first decreases rapidly and then approaches the constant value of unity.

Since

$$
T=T_{1}+T_{2},
$$

we get

$$
\begin{equation*}
T_{1}=\frac{T_{\mathrm{o}}}{1-e^{-k i}}-T_{2}, \tag{5}
\end{equation*}
$$

T_{2} being constant with respect to the illumination.

FIG. 3.-Graphs of the function $\frac{1}{T=1-\epsilon^{-k 1}}$, for different values of k
The constant k has an interesting physical meaning. In problems in electromagnetism ${ }^{5}$ and mechanics ${ }^{6}$ the reciprocal of k is known as the time constant and is equal to the time that it takes for the quantity under calculation-for example, the electric current, or mechanical velocity-to rise to 0.632 of its steady value. By analogy, in the present case we may call the reciprocal of k the illumination-constant. It affords a measure of the illumination

[^3]necessary to give a production equal to approximately two-thirds of its value under high illuminations.

The influence of k upon the rapidity with which the function P, the production rate, approaches its greatest value may be seen very clearly from the curves of Figure 2. For $k=1$, the production for all practical purposes has reached its greatest value at 8 foot-candles; for $k=0.6$ at 8 foot-candles it is 1 per cent below it; for $k=0.4,4$ per cent below it, and so on.
It has long been recognized that in order that they may be performed with the same degree of efficiency, some kinds of eye work require more illumination than others; for instance, work on dark cloth requires more illumination than similar work on white material. The reflection factor of the material worked on and the degree of discrimination of detail required in the work have much to do with the amount of illumination that will be required to accomplish the work in the shortest time and as easily as possible. For instance, in the Code of Lighting for Factories, Mills, and Other Work Places, the advisory commission of the Council of National Defense ${ }^{7}$ recommended for rough manufacturing, such as rough machining, rough assembling, and rough bench work, 2 to 4 foot-candles; for fine manufacturing, such as fine lathe work, pattern and tool making, and work on light-colored textiles, 4 to 8 foot-candles; for special cases of fine work, such as watchmaking, engraving, drafting, and work on dark-colored textiles, 10 to 15 foot-candles.

The departmental committee of the British home office ${ }^{8}$ found that for work requiring the same degree of discrimination of detail, the illumination which was deemed to be sufficient by the worker varied inversely as the reflecting power of the material worked on. In other words, a certain brightness is necessary for comfortable seeing, or the product of the illumination and the reflection factor of the material being worked on must be constant.

The nature of the work, therefore, determines how great the intensity of the illumination must' be in order that the production rate shall reach a certain percentage of its maximum valüe. If equation (1) correctly expresses the relation between production-rate and illumination, then, as we have already seen, when the illumination is equal to the reciprocal of k the production rate will have reached about 63 per cent of its maximum value.

If equation (1) can be used to express the relation between the illumination and the production rate, it is interesting to determine the rate at which the production rate varies with the illumination.

[^4]From equation (1), by differentiating P with respect to I, we get

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} I}=k\left(P_{c}-P\right) \tag{6}
\end{equation*}
$$

which gives a differential law for the variation of the production rate with the illumination. According to equation (6), the rate at which the production rate varies with the illumination, for any given illumination, I, is directly proportional to the difference between the production rate, P, for that illumination, and the greatest possible value of the production rate, $P_{c} ; k$ being the constant of proportionality.

The constant k, from the manner in which it enters into equation (1), is not easy to determine from an experimental curve, although if P is known for a high value of the illumination, and also for a low value, and $\frac{\mathrm{d} P}{\mathrm{~d} I}$ is known for the low value of P, the value of k can be approximately determined from the equation

$$
\begin{equation*}
k=\frac{\frac{\mathrm{d} P}{\mathrm{~d} I}}{P_{c}-P}, \tag{7}
\end{equation*}
$$

since P_{c} may be taken as approximately equal to the value that P assumes for a high value of the illumination.

The constants w and T_{c}, occurring in equations (2) and (4), respectively, can be determined by experiment. w, the average weight of a letter, including large and small letters and postal cards, was recently found by the Post Office Department to be equal to 0.02428 pound. T_{c} can be determined, from equation (3), if P_{c} and w are known. From the values for P_{c} given for curves 1 and 2 of Figure 1, T_{c} may be computed to be approximately equal to 0.00072 of an hour and 0.00131 of an hour, respectively. No determination of the value of the constant T_{2} has yet been made.

The nature of the constant k and its relation to the constants T_{c} and T_{2} will be discussed in a later paper.

relation of the proposed theory to the results obtained in other investigations.

Information as to the way in which the production rate varies with illumination in industry is very scarce, but such information as exists would seem to indicate that the formula given in equation (1) will, at least approximately, represent the relation as far as it is known. For instance the results obtained by the United States Public Health Service ${ }^{9}$ during the recent survey of the lighting of the New York post office, in the sorting of test cards under illumina-

[^5]tions of 3.6, 8, and 14 foot-candles, respectively, can be calculated by this formula within 0.3 of 1 per cent, if P_{c} is taken as $\mathbf{6 0 . 3}$ cards per minute, and k, as $0.77 .{ }^{10}$ The results for this case are shown in Figure 4, where the experimental values are shown by circles, and the calculated values by the smooth curve.

While the results obtained by Hess and Harrison ${ }^{11}$ for the inspection of parts of roller bearings under various levels of illumination from 5 to 20 foot-candles do not show conclusively that the production rate approaches a constant value as the illumination is increased, they do not disprove such an assumption.

The results obtained by Cohn, ${ }^{12}$ Ferree and Rand, ${ }^{13}$ Luckeish, Taylor and Lowden, ${ }^{14}$ and Cobb ${ }^{15}$ in their investigations of visual acuity, speed of discrimination, speed of reading, and speed of vision are interesting in this connection.

Fig. 4.-Smooth curve drawn through points representing results obtained for the sorting of test cards in a recent survey of the lighting of the New York City Hall post office made by the United States Public Health Service. (The same lighting units were used for all the tests, only the lamps within the units being changed.)

Cobb, for instance, found that when a small black dot, arising out of a clear white field and followed by such a field, was used as a test object, speed of vision increased as the logarithm of the brightness of the field, but that when a larger and more complicated test olject, preceded and followed by another object tending to confuse the vision, was used, a maximum speed of vision was reached for a brightness somewhere below 100 millilamberts, further addition to the illumination adding nothing to the speed.

[^6]In this connection it is interesting to note that for moderate values of k, i. e., in the neighborhood of 0.4 , the curve given by equation (1) coincides closely with the curve for the logarithm of $I+1$ from $I=0$ to $I=4$. Beyond $I=4$ the two curves diverge. The graph of $\log (\mathrm{I}+1)$ is shown in Figure 5.

It seems to be established by the experiments of Cobb and others that, for a simple stimulus, speed of vision varies directly as the logarithm of the brightness of the test object. If, however, the stimulus is a complicated one, the relation between speed of vision and illumination is no longer logarithmic, but approaches a relation

Fig. 5.-Graph of the function $\log (\mathrm{I}+1)$
of the form given by equation (1). Further, in the case of the relation of the rate of production to illumination the relation is still further complicated by the time occupied by the manual element of the production and by the time occupied by mental processes, both times being, to a greater or lesser degree, independent of the illumination. It seems possible therefore that, in general, the relation between rate of production and intensity of illumination may be given by an equation of the form of equation (1).

The author wishes to acknowledge his indebtedness to Mr. Rollo H. Britten, assistant statistician of the United States Public Health Service, for his review of the statistical portion of this study.

REFERENCES.

Bloch, L.: Lichttechnik. Munchen und Berlin, 1921, pp. 83-85.
Cobb, Percy W.: Some Experiments on the Speed of Vision. Trans. Illum. Eng. Soc. 19, 150-175, 1924.
Cohn, Hermann:
Ueber den Beleuchtungswerth der Lampenglocken. Wiesbaden, 1885, pp. 70-72.
Lehrbuch der Hygiene des Auges. Wien und Leipzig, 1892, pp. 366, 367. Committee to promote Central Station Illumination Engineering, Report of, 1924. National Electric Light Association, New York.

Departmental committee-Reports of, on Lighting in Factories and Workshops. First Report, 1915; Second Report, 1921; Third Report, 1922. H. M. Stationery Office, London.
Doane, S. E.: Significance of Data on Illumination and Production. General Electric Review, 25, 98-102, 1922.
Durgin, W. A. (Commonwealth Edison Co.): Productive Intensities. Trans. Illum. Eng. Soc., 13, 417-428, 1918. Electrical Review, March 22, 1919, Chicago, pages 449-451.
Evans, Wm. A. D.: Shop Lighting for Production and Safety. Railway Electrical Engineer, 9, 141-146, 1918.
Elliott, Martha: Comparative cognitive Reaction Time with Lights of different Spectral Character and at Different Intensities of Illumination. Amer. Journ. of Psychol., 1922, 33, 97-112.
Farmer, Adams, and Stephenson: An Investigation in a Coal Mine (II). Jour. Nat. Institute of Industrial Psych., London, 1, 173-181, 1923.
Ferree and Rand:
The Effect of Variations in Intensities of Illumination on Functions of Importance to the Working Eye. Trans. Illum. Eng. Soc., 15, 769-801, 1920.
The Effect of Variation of Visual Angle, Intensity, and Composition of Light on Important Ocular Functions. Trans. Illum. Eng. Soc., 17, 69102, 1922.
Gariel, C. M.: Eclairage des ateliers et des usines. Rec. des trav., comm. intern. de l'eclairage, Paris, July, 1921, pp. 190-203, 1923.
Gaster, Leon:
Industrial Lighting and its Relation to Efficiency. Jour. Roy. Soc. Arts. 68, 414-423, 1920.
Industrial Lighting: Ideal Requirements (Legislative and Otherwise) and Practical Solutions. The Illuminating Engineer, London, 15, 74-88, 1922.
Halbertsma, N. A.: Fabrikbeleuchtung. Munchen und Berlin, 1918, pp. 3-10.
Harrison, Ward: The necessity for Standards in the Relation Between Illumination and Output. Trans. Illum. Eng. Soc., 15, 337-341, 1920.
Harrison, Haas, and Dopke: Better Illumination Cuts Production Costs. Electrical World, Oct. 15, 78, 763-764, 1921.
Hess and Harrison: The Relation of Illumination to Production. Trans. Illum. Eng. Soc., 18, 787-800, 1923.
Industrial Fatigue Research Board of Great Britain, Reports of the: No. 9 (1920): A Study of Output in Silk Weaving During the Winter Months. No. 20 (1922): A Study of Efficiency in Fine Linen Weaving, pp. 18-21. No. 23 (1923): Variations in Efficiency in Cotton Weaving, pp. 19-27,55.
International Labor Office: The Protection of Eyesight in Industry. Geneva, 1923.

Johnson, H. M.: Reaction-time Measurements. Psychological Bulletin, 20, 562-589, 1923.
Kurlander, J. H.: Illumination and Production. Bulletin L. D., 106A, Edison Lamp Works of General Electric Co., April, 1923.

Luckeish, Taylor, and Sinden: Data Pertaining to Visual Discrimination and Desired Illumination Intensities. Jour. Franklin Institute, December, 1921.
Magee, John: How Better Lighting Increased Our Production 25 per cent. Factory, February, 1923, pp. 148-150; A. W. Shaw Co., Chicago, Ill.
Marks, L. B.: Factory Lighting and its Bearing on the Safety, Health, and Productivity of Workers. Safety, 5, 10-15, 1917.
Post Office Department: Lighting of Post Offices-Summary of a report made by the Office of Industrial Hygiene and Sanitation of the United States Public Health Service, at the request of Postmaster General Hubert Work, 1922. Government Printing Office, Washington, 1923.
Public Health Service:
Schereschewsky and Tuck: Studies in Vocational Diseases, II: The Hygienic Conditions of Illumination in Workshops of the Women's Garment Industry. Public Health Bulletin, No. 71, Government Printing Office, Washington, 1915.
Code of Lighting for Factories, Mills, and Other Work Places. Government Printing Office, Washington, 1919.
Thompson, Schwartz, Ives, and Bryan: Studies in Illumination, I. The Hygienic Conditions of Illumination in Certain Post Offices, especially Relating to Visual Defects and efficiency. Public Health Bulletin, No. 140. Government Printing Office, Washington, 1924.

Rice, David Edgar: Visual Acuity with Lights of Different Colors and Intensities. Archives of Psychology, No. 20, 1912.
Richtmyer and Howes: A Method of Studying the Behavior of the Eye Under Different Conditions of Illumination. Trans. Illum. Eng. Soc., 11, 100-113, 1916.

Stickney and Mahan: Factory Illumination and Production. General Electric Review, 24, 1023-1024, 1921.
Wilson, D. R.: Some Observations on Industrial Lighting. Journ. Ind. Hyg., 5, 371-381, 1924.

Table 1.-Weight of mail separated each half hour during four consecutive days, under the original illumination of 3.3 foot-candles, in the dispatching division (34 separations) on the mezzanine floor of the New York City Hall post office, January 16-19, 1923.

Taple 2.-Weight of mail separated each half hour during four consecutive days under the original illumination of 3.3 foat-candles, in the delisery division (50 eeparations) on the first floor of the New York City Hall post office, January 16-19, 1823.

Table 3.-Average weight in pounds of mail separated per man per hour during the afternoon and evening for four consecutive days in the month of January, 1923, by a group of clerks in both the dispatching and delivery divisions of the New York City Hall post office.

Group.	Jan. 16.	Jan. 17.	Jan. 18.	Jan. 19.	$\underset{\substack{\text { Mean } \\ \text { for } \\ \text { January. }}}{ }$
1.	dispatching division, mezzaning floor (3i sepARATTONS, 3.3 FOOT-CANDLES.				
Afternoon (8 elertrs)	25.7 32.3	29.7 34.2	24.8 30.9	21.8 34.1	25.5 32.9
Both together.	29.9	32.5	28.4	29.3	30.1
	deliveky division, first floor (50 separations) 3.3 FOOT-CANDLES.				
Afternoon (8 cleriss).	16.1	18.3	16.0	14.3	16.2
Evening (8 clerks)...	14.7	13.1	12.2	13.3	13.3
Both together.	15.3	15.1	13.7	13.7	14.4

Table 4.-Weight of mail separated each half hour during four consecutive days under 7.7 foot-candles in the dispatching division ($\$ 4$ separations) on the mezzanine floor of the New York City Hall post office, February 18-16, 1923.

Time, p. m.	Feb. 13.		Feb. 14.		Feb. 15.		Feb. 16.	
	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.		Man hours.	
(8 clerks.)	$\begin{aligned} & 4 \\ & 4 \\ & 3: 55 \\ & 4 \\ & 3: 55 \\ & 3: 55 \end{aligned}$	$\begin{aligned} & 136 \\ & 135 \\ & 168 \\ & 136 \\ & 139 \\ & 132 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \mathbf{3} \\ & 2: 55 \\ & 2: 55 \end{aligned}$	$\begin{aligned} & 67 \\ & 75 \\ & 74 \\ & 71 \\ & 61 \\ & 66 \end{aligned}$	$\begin{aligned} & 2: 55 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2: 55 \end{aligned}$	$\begin{array}{r} 80 \\ 93 \\ 97 \\ 89 \\ 99 \\ 102 \end{array}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{2}: 50 \\ & \mathbf{2 : 5 5} \end{aligned}$	100101881008891
1 to 1:30..........								
1:30 to 2								
2 to 2:30..								
2:30 to 3 .								
3 to 3:30.......								
3:30 to 4.........								
(8 clerks.)								
4 to 4:30.	4	140	2:40	50	3:30	141	2:30	80
4:30 to 5	4	147		180	3:45	173	3:20	96
5 to 5:30	4	149	3:55	144	4	115	4	122
5:30 to 6	4	130	4	184	4	114	4	134
6 to 6:30	4	149	3:50	195		117	4	115
6:30 to 7.	3:35	118	3:55	186	3:45	96	3:50	112
7 to 7:30.	3:55	143	3:50	163	3:45	76	3:50	110
7:30 to 8 .	4	141	3:55	163	4	80	3:40	99
8 to 8:30.	3:50	142	3:50	161	3:45	77	4	120
8:30 to 9.........	3:50	122	3:40	140	1:25	48	2:40	138

Table 5.-Weight of mail separated each half hour during four consecutive days under an illumination of 4.3 foot-candles in the delivery division (50 separations) on the first floor of the New York City Hall post office, Feb. 13-16, 1923.

Time, p. m.	Feb. 13.		Feb. 14.		Feb. 15.		Feb. 16.	
	Man hours.	Weight in pounds.	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.	Weight in pounds.
(8 clerks.)								
1 to 1:30......	$\begin{aligned} & 2: 45 \\ & 1: 35 \\ & 1: 20 \\ & 1 \\ & 1: 20 \\ & 2: 55 \end{aligned}$	393733182645	$\begin{aligned} & \mathbf{3} \\ & \mathbf{2}: 50 \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{2 : 5 5} \\ & \mathbf{2 : 5 0} \end{aligned}$	$\begin{aligned} & 49 \\ & 44 \\ & 60 \\ & 56 \\ & 46 \\ & 42 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2: 55 \\ & 3 \\ & 2: 50 \end{aligned}$	$\begin{aligned} & 57 \\ & 56 \\ & 54 \\ & 45 \\ & 52 \\ & 49 \end{aligned}$	333$2: 55$3$2: 50$$2: 50$$2: 40$	484642484339
1:30 to 2.								
2 to 2:30.								
2:30 to 3.								
3 to 3:30..								
3:30 to 4--.-.-...								
(8 clerks.)								
4 to 4:30...	3334444444	63373739344360478041	4444444444	6048494575586475615968	4444444444	60596157595260575243	4444444444	$\mathbf{6 0}$$\mathbf{6 1}$$\mathbf{6 1}59\mathbf{6 1}5860\mathbf{4 8}$$\mathbf{6 1}$$\mathbf{6 0}$
4:30 to 5....								
5 to 5:30.								
5:30 to 6								
6 to 6:30.								
6:30 to 7								
7 to 7:30								
7:30 to 8.								
8 to 8:30.								
8:30 to 9.								

Table 6.-Average weight in pounds of mail separated per man per hour during the afternoon and avening for four consecutive days in the month of February, 1923, by a group of clerks in both the dispatching and delivery divisions of the New York City Hall post office.

Group	Feb. 13.	Feb. 14.	Feb. 15.	Feb. 16.	Mean for February
Afternoon (8 clerks) Epering (8 clerks)	dispatchava mivision, mezzanine floor (34 separations), 7.7 foot-candles.				
	35.6 85.2	23.2 41.7	30.4 28.9	32.0 31.4	30.8 35.1
Both groups together	35.4	35.7	29.6	31.6	33.6
	DLLIVERY DIVISION,TIONS) 4.3 FOOT-CANDLES.				
Afternoon (8 clerks) Evening (8 clerks).	$\begin{aligned} & 18.2 \\ & 14.9 \end{aligned}$	16.915.4	17.6 \vdots 14.0	15.314.7	16.914.8
Both groups together	15.6	15.9	15.1	14.9	15.4

Table 7.-Weight of mail separated each half hour during four consecutive days under 7.5 foot-candles in the dispatching division (34 separations), mezzanine floor of the New York City Hall post affice, June 11-14, 1923.

Table 8.-Weight of mail separated each half hour during four consecutive days under 4.3 foot-candles, in the delivery division (50 separations), first floor of the New York City Hall post office, June 11-14, 1923.

Time, p. m.	June 11.		June 12.		June 13.		June 14.	
	Manhours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Manhours.		Manhours.		Manhours.	Weight in pounds
(8 clerks.)								
1 to 1:30....	3:15	77	3:40	64	3	56	3:25	58
1:30 to 2--	2:10	42	3:45	66	3:20	58	3:05	53
2 to 2:30...	1:55	41	3:50	70	3:25	59	3:25	55
2:30 to 3-.......	3	61	3:50	68	3:20	56	3:30	57
3 to $3: 30-$ $3: 30$ to 4	2:50	55 44	$3: 47$ $3: 23$	68 52	$3: 30$ $3: 40$	${ }_{6}^{56}$	$3: 50$ $3: 30$	${ }_{60}^{62}$
(8 clerks.)								
4 to 4:30........	2:30	42	3:25	56	3:50	61	3:55	65
4:30 to 5....	3:05	53	3:15	50	3:30	50	3:50	61
5 to 5:30..	3:10	54	3:15	54	3:30	51	3:48	67
5:30 to 6.	3:15	53	3:25	56	3:05	43	3:45	63
6 to 6:30	4.45	${ }_{50}^{65}$	3:45	${ }_{66}^{63}$	3:25	55	3:52	${ }_{68}^{61}$
6:30 to 7 -	3:45	50	4.50	${ }_{62}^{66}$	3:30	52	3:55	${ }_{62}^{66}$
7 to 7:30-.	4	${ }_{52}^{58}$	3:50	${ }_{65}^{62}$	3:20	33	3:48	60
	3:50	50	3:45	67	3	48	3:55	67
8:30 to 9.............	2:40	42	3:20	52	1:30	27	3:52	63

Table 9.-Average weight in pounds of mail separated per man per hour during the afternoon and evening for four consecutive days in the month of June, 1923, by a group of clerks in both dispatching and delivery divisions of the New York City Hall post office.

Group.	June 11.	June 12.	-June 13.	June 14.	Mean for June.
Afternoon (8 clerks) \qquad Evening (8 clerks)	dispatching division, mezzanine floor, 34 sepaRATIONS, $\mathbf{\text { I.E-FOOOT}}$ CANDLES.				
	30.936.4	35.034.1	41.231.1	39.232.8	36.333.5
Both groups together	34.5	34.4	33.9	34.4	34.2
	delivery division, first floor, 50 separations, 4.8-FOOT CANDLES.				
Afternoon (8 clerks) Evening (8 clerks)	$\begin{aligned} & 20.1 \\ & 15.2 \end{aligned}$	17.316.6	17.115.3	16.616.5	17.715.9
Both groups together	16.7	16.9	16.0	16.5	16.5

Table 10.-Weight of mail separatod each half howt during three consecutive days under an illumination of 7.8-foot candles, in the dispatching division (84 separations) on the mezzanine floor of the New York City Hall post office, September 10-12, 1923.

Time, p. m.	Sept. 10.		Sept. 11.		Sept. 12.	
	Man hours.	Weight in pounds.	Man hours.	Weight in pounds.	Man hours.	Weight in pounds.
(6 clerks.)						
1 to 1:30.	2:55	144	2:55	98		92
1:30 to 2....	3	127	2:50	96	2:55	99
2 to 2:30...	2:56	130	2:54	118	2:55	91
2730 to 3...	2:50	155	2:55	101	2:54	89
3 to 3:30.	2:55	131	3	86		121
3:30 to 4.....	3	147	2:50	108	2:50	127
(8 clerks.)						
4 to 4:30.......	3:56	112	3:55	96		100
4:30 to 5....	3:54	122	3:55	114	3:50	97
5 to 5:30...	4	124	3:50	88	3:55	116
5:30 to 6..	3:52	116	3:56	140		141
6 to 6:30-	4.5	142	3:53	126		138
6:30 to 7	3:55	139.	3:55	131	3:55	112
7 to 7:30...	4	126	4	104	3:55	122
7:30 to 8.	4	124	4	91	3:55	151
8 to 8:30..	3:54	123	4	92		129
8:30 to 9....	3:55	126	4	131	4	141

Table 11.-Weight of mail separated each half hour during three consecutive days under an illumination of 4.6-foot candles in the delivery divison (50 separations) on the first floor of the New York City Hall post office, September 10-12, 1923.

Table 12.-Average weight in pounds of mail separated per man.per hour during the afternoon and evening for three consecutive days in the month of September, 1923, by a group of clerks in both the dispatching and delivery divisions of the New York City Hall post office.

| Group. |
| :--- | | Sept. 10. |
| :--- |

Table 13.-Weight of mail separated each half hour during three consecutive days under an illumination of 6.5 foot-candles, in the dispatching division (34 separations) on the mezzanine floor of the City Hall post office, New York, Nov. 12-14, 1923.

Time, p. m.	Nov. 12.		Nov 13		Nov. 14.	
	Man hours.	Weight in pounds.	Man . hours.		Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$
(4 clerks.)						
1 to 1:30...	1:50	74	2	68	2	53
1:30 to 2	2	49	2	80	1:55	63
2 to 2:30	1:55	82	1:55	72		70
2:30 to 3-	- 1:50	69	2	61	2	65
3 to $3: 30$	2	40	1:55	54	2	45
3:30 to 4.	2	70	1:55	70	1:50	80
(4 clerks.)						
4 to 4:30.	1:55	40	2	33	1:55	55
4:30 to 5.	2	43		44		93
5 to 5:30-	2	63	1:50	71	2	85
5:30 to 6	1:50	64	2	64	2	76
6 to 6:30..	2	91		77		67
6:30 to 7.	1:55	87	1:55	59	1:50	77
7 to 7:30-.	1:55	58	1:55	53	2	62
7:30 to 8.-	2	65	2	84	1:55	66
8 to 8:30..	2	89	2	77	1:55	52
8:30 to 9...	1:55	56	1:50	86		62

Table 14.-Weight of mail separated each half hour during there consecutive days umder an illumination of 4.5 foot-candles, in the delivery division (50 separations) on the first floor of the New York City Hall post office, Nov. 12-14, 1983.

Table 15.-Average weight in pounds of mail separated per man per hour during the afternoon and evening for three consecutive days in the month of November, 1923, by a group of clerks in .both the dispatching and delivery divisions of the New York City Hatt post office.

Group.	Nov. 12.	Nov. 13.	Nov. 14.	Mean for November.
Afternoon (4 clerks) Evening (4 clerks)	dISPATCHING DIVISION, MEZZANINE FLOOR, 34 SEPARATIONS, 6.5 foot-CANDLES			
	$\begin{aligned} & 33.1 \\ & 33.6 \end{aligned}$	34.338.2	31.935.5	33.134.1
Both groups together.	33.4	33.6	34.1	33.7
	DELIVERY DITLSION, FIRST FLOOR, 50 SEPARATIONS, 43 FOOT-CANDLES			
	$\begin{aligned} & 10.2 \\ & 17.5 \end{aligned}$	14.019.7	16.417.7	12.2
Both groups together.-.-	15.2	17.9	17.3	16.5

Tasle 16.- Weight of mail separated each half hour during three consecutive days under an illumination of 3.8 foot-candles, in the dispatching division ($\$ 4$ separations), on the mezzanine floor of the New York City Hall post office, Dec. 10-12, 1928.

Time, p. m.	Dec. 10.		Dec. 11.		Dec. 12.	
	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.	$\begin{gathered} \text { Weight } \\ \text { in } \\ \text { pounds. } \end{gathered}$	Man hours.	
(4 clerks.)	$\begin{aligned} & 1: 57 \\ & \mathbf{2} \\ & \mathbf{2} \\ & \mathbf{2} \\ & \mathbf{2} \\ & \mathbf{1}: 55 \end{aligned}$	$\begin{aligned} & 58 \\ & 64 \\ & 64 \\ & 58 \\ & 52 \\ & 96 \end{aligned}$	$\begin{aligned} & 1: 35 \\ & 1: 40 \\ & 2 \\ & 1: 48 \\ & 1: 42 \\ & 2 \end{aligned}$	796560594758	$\begin{aligned} & 2 \\ & 1: 50 \\ & 2 \\ & 1: 55 \\ & 1: 55 \\ & 2 \end{aligned}$	7954587255133
1 to 1:30.......						
1:30 to 2						
2 to 2:30...						
2:30 to 3-.						
3 to 3:30-.						
3:30 to 4-.						
(4 clerks.)						
4 to 4:30....	$\begin{aligned} & 1: 50 \\ & 1: 52 \\ & 1: 45 \\ & 1: 50 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	4458696969725663584745	$1: 40$$1: 38$$\mathbf{2}$222222222	466629661814449486066	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1: 50 \\ & 2 \\ & 1: 46 \\ & 21: 50 \\ & 1: 50 \\ & 1: 55 \\ & 2 \\ & 2 \end{aligned}$	53
4:30 to 5....						64
5 to 5:30.						81
5:30 to 6 .						72
6 to 6:30...						38
6:30 to 7						62
7 to 7:30..						94
7:30 to 8.						45
8 to 8:30.						83
8:30 to 8 .						34

Table 17.-Weight of mail separated each half hour during three consecutive days under an illumination of 5.9 foot-candles in the delivery division (50 separations) on the first floor of the New York City Hall post office, December 10-12, 1923.

Time, p. m.	Dec. 10.		Dec. 11.		Dec. 12.	
	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { pounds. } \end{aligned}$	Man hours.	
(8 clerks.)						
1 to 1:30.	2:25	48	3:02	49	2:40	5
1:30 to 2	2:05	39	2:56	68	3:02	1
2 to 2:30.	2:25	18	3:04	40	2:56	60
2:30 to 3 .	2:25	17	2:48	28	2:44	44
3 to $3: 30$	2:25	29	2:35	37	2:24	40
3:30 to 4..	2:25	19	2:50	34	2:18	42
(8 cterks.)						
4 to 4:30..	3:20	53	3:20	62	3:20	60
4:30 to 5..	3:20	52	3:20	54	3:20	67
5 to 5:30-	3:20	57	3:20	65	3:20	64
$5: 30$ to 6	3:20	55	3:20	63	3:20	66
6 to 6:30	3:20	74	3:20	67	3:20	62
6:30 to 7	$3: 20$.	49	3:20	60	$3: 20$	52
7 to 7:00.	3:20	67	3:20	64	3:20	61
7:30 to 8 .	3:20	57	3:20	61	3:20	65
8 to 8:30	3:20	57	3:20	68	3:20	65
$8: 30$ to 9.	3:20	76	3:20	60	3:20	57

Table 18.-Average weight in pounds of mail separated per man per hour during the afternoon and evening for three consecutive days in the month of December, 1923, by a group of clerks in both the dispatching and delivery divisions of the New York City Hall post office.

Group	Dec. 10.	Dec. 11.	Dec. 12.	Mean for lecember.
Afternoon (4 clerks) Evening (4 clerks)	DISPATCHING DIVIBION, MEZZANINE FLOOR, 31 SEPARATIONS, 3.8 FOOT-CANDLES.			
	$\begin{aligned} & 32.9 \\ & 30.1 \end{aligned}$	34.131.8	38.529.1	35.230.1
Both groups together..	31.2	32.6	32.7	32.1
	dELIVERY DIVISION, FIRST FLOOR, 50 separations, 5.9 foot-CANDLES.			
Afternoon (8 clerks) ..	$\begin{array}{r} 12.0 \\ 17.9 \end{array}$	$\begin{array}{r} 14.9 \\ 18.5 \end{array}$	17.9	15.018.4
Evening (8 clerks)			18.8	
Both groups together.	16.1	17.3	18.5	17.3

Table 19.-Summary of tests made to determine the relation of the rate of production to the intensity of illumination in the dispatching division (34 separations) on the mezzanine floor in the New York City Hall post office, during the year 1923.

Tabls 20.- Suinctary of tasts made to dedermine the relation of the rate of produation to the intemsity of illumination in the delivery division (50 separations) on the first floor in the New York City Hall post office, during the year 1923.

Date of test.	Wattage of tamps.	$\begin{aligned} & \text { Humina- } \\ & \text { tion } \\ & \text { in foote } \\ & \text { candles. } \end{aligned}$	Average rate of production in pounds per man per hotur.	Probahle error of the average rate of production.
Jan. 16-19....	Old system.	3.3	14.4	0.23
	NEW LGEETATG UNITS ENSTALLED.			
	150150	4.3	15.4	. 23
		4.3	16.6	. 15
	LAMPS CHANGED JULY 25, AND WALLS AND CEILINGS REPAINTED.			
Sept. 10-12 Nov. 12-14	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	4.6 4.3	16.5 16.5	.41 .56
	lamps Changed nov. 15.			
Dec. 10-12..-.-...-.-.-.....................................-.	150	5.9	17.3	. 35

Table 21.-Comparison of the values of the rate of production obtained from the experimental curve and those calculated from the formula $P=P_{c}\left(1-e^{-k 1}\right)$.

INDIA CENSUS OF 1921 AND INFLUENZA EPIDEMIC OF 1918-19.

The London correspondent of the Journal of the American Medical Association, reporting recently on the fifth uniform census of India taken in 1921, states that the outstanding fact of the final report is the small increase shown in the population-1.2 per cent-in the decade elapsing since the next preceding census, which showed an increase of more than 7 per cent. Owing to the enormous task involved in compiling the data, the completed report for 1921 was not issued until this year.

The principal cause of the difference between the increases in population shown for the two intercensal periods is stated to be the influenza epidemic of 1918-19, which, in the course of a few months,
was known to have been responsible for 6,000,000 deaths in India. The census has established the fact that double the number-or 4 per cent of the vast population of that country-died during the epidemic. According to the 1921 census, the population amounts to $319,000,000$. The case mortality of the epidemic was placed at about 10 per cent, on which basis it is estimated that $125,000,000$ people, or two-fifths of the whole population, were affected. The scourge is said to have come at a time when the economic power of the people had been greatly reduced by a succession of bad seasons.

As regards the occupational distribution of the population, India is predominantly agricultural, no less than 73 per cent of the people being engaged in agricultural and pastoral pursuits. Industry supports about one-tenth of the population.

Some decline in the number of child marriages is shown. Forty years ago only 481 females per 10,000 between the ages of 10 and 15 years were unmarried, whereas the proportion shown in 1921 was 601. Between the ages of 5 and 10 , the number of unmarried females increased during the same period from 874 to 907 per 10,000 .

DEATHS DURING WEEK ENDED NOVEMBER 1, 1924.

Summary of information received by telegraph from industrial insurance companies for week ended November 1, 1924, and corresponding week of 1923. (From the Weekly Health Index, November 4, 1924, issued by the Bureau of the Census, Department of Commerce.)

Deparment of Comerc.)	Week ended Nov. 1, 1924.	$\begin{gathered} \text { Corresponding } \\ \text { week, } 1923 \end{gathered}$
Policies in fo	57, 542, 323	53, 887, 831
Number of death claims	10, 116	8, 786
Death claims per 1,000 polici	9.2	8. 5

[^7]| City. | Week ended Nov. 1, 1924. | | $\begin{gathered} \text { Annual } \\ \text { death rate } \\ \text { per 1,000 } \\ \text { corre- } \\ \text { sponding } \\ \text { weekk, } \\ 1923 . \end{gathered}$ | Deaths under 1 year. | | Infant mortality rate, wcek ended Nov. 1, 1924. 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total deaths. | Death rate. ${ }^{1}$ | | Week ended Nov. 1, 1924. | $\begin{gathered} \text { Corre- } \\ \text { sponding } \\ \text { week, } \\ 1923 . \end{gathered}$ | |
| Total (65 cities) | 6, 174 | 12.0 | 311.7 | 729 | 3755 | |
| Akron. | 33 | | | 5 | 4 | 53 |
| Albany ${ }^{\text {4 }}$ | 32 | 14.1 | 14.7 | 5 | 4 | 114 |
| Atlanta.- | 81 | 18.5 | 16.4 | 9 | 7 | |
| Baltimore ${ }^{\text {a }}$ | 203 | 13.5 | 13.3 | 30 | 28 | 89 |
| Birmingham | 53 | 13.8 | 13.6 | 2 | 1 | |
| Boston...- | 171 | 11.5 | 13.8 | 22 | 23 | 61 |
| Bridgeport.. | 27 | | | 2 | 4 | 32 |
| Buffalo- | 105 | 10.0 | 12.6 | 17 | 11 | 72 |
| Cambridge | 23 | 10.7 | 10.8 | 3 | 2 | 52 |
| Camden.. | 18 | 7.4 | 14.7 | 5 | 9 | 82 |
| Canton.... | 23 | 11.7 | 6.3 | 5 | 3 | 109 |

${ }^{1}$ Annual rate per 1,000 population.
${ }_{2}$ Deaths under 1 year per 1,000 births-an annual rate based on deaths under 1 year for the week and estimated births for 1923. Cities left blank are not in the registration area for births.
${ }^{3}$ Data for 63 citics.

- Deaths for week ended Friday, October 31, 1924.

Deaths from all causes in certain large cities of the United States during the week ended November 1, 1924, infant mortality, annual death rate, and comparison with corresponding week of 1983-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{City.} \& \multicolumn{2}{|l|}{Week ended Nov. 1. 194.} \& \multirow[t]{2}{*}{Annual
deeth rate
per 1,ce日
corre-
sponding
week,
1923.} \& \multicolumn{2}{|l|}{Deaths under 1 yew.} \& \multirow[t]{2}{*}{Infant mortality rate week ended Nov. 1, 1924.}

\hline \& $$
\begin{gathered}
\text { Total } \\
\text { deaths. }
\end{gathered}
$$ \& Death rate. \& \& Week
ended Nov. 1, 1924. \& $$
\begin{gathered}
\text { Corre- } \\
\text { sponding } \\
\text { week, } \\
1923 .
\end{gathered}
$$ \&

\hline Chicago ${ }^{4}$ \& 564 \& 10.0 \& 10.3 \& 81 \& 85 \& 76

\hline Cincinnati. \& 134 \& 17. 1 \& 14.5 \& 16 \& 9 \& 100

\hline Cleveland. \& 153 \& $\begin{array}{r}8.7 \\ \hline 14 \\ \hline\end{array}$ \& 9.3

13 \& 17 \& 24 \& 123

\hline Columbus. \& ${ }^{74}$ \& 145 \& 13.4
9.7 \& 12 \& 8 \& 123

\hline Dallas..... \& 43 \& 13.2 \& 10.4 \& 4 \& 5 \& 67

\hline Denver...-. \& 60 \& \& 9.6 \& 5 \& 5 \&

\hline Des Moines. \& 221 \& 10.4 \& 9.6 \& 3 \& 46 \& 65

\hline Detroit.- \& 18 \& 8.7 \& 5.9 \& 1 \& 2 \& 22

\hline Erie. \& 20. \& \& \& 2 \& 6 \& 41

\hline Fall River ${ }^{\text {d }}$ \& 32 \& 13.8 \& 10.3 \& 5 \& 4 \& 70

\hline Flint \& 11 \& \& \& 2 \& 3 \& 35

\hline Fort Worth \& 21 \& 7.4 \& 12.5 \& 1 \& 3 \& 16

\hline Grand Rapids \& 53 \& \& \& 8 \& 1. \&

\hline Indianapolis. \& 80 \& 11.9 \& 24 \& \% \& 8 \& 66

\hline Jacksonville, Fla \& 45 \& 82.9 \& 16.7 \& 8 \& 4 \&

\hline Jersey City \& 61 \& 10.2 \& 13.3 \& 12 \& 9
3 \& 8

\hline Kansas City, Kams. \& 85 \& 12.3 \& 15.8
14.4 \& ${ }_{9}^{2}$ \& 12 \&

\hline Kansas City, Mo \& 213 \& \& \& 25 \& 21 \& 78

\hline Los Angeles. \& 57 \& 11.5 \& 14.4 \& 6 \& 9 \& 56

\hline Lowell. \& 31 \& 14.0 \& 122 \& 3 \& 2 \& 84

\hline Lynn. \& 15 \& 7.5 \& 9.6 \& 1 \& \& 25

\hline Memphis.- \& 69 \& 20.9 \& 15.9 \& 1 \& 8 \& 100

\hline Milwaukee \& 96 \& 10.2 \& ${ }^{7} 8$ \& 21 \& 1 \& 100

\hline Nashville ${ }^{\text {4 }}$ \& 37
31 \& 15.6
12.2 \& 88 88 \& 2 \& 4 \& 31

\hline New Bedford. \& 31
36 \& 12.2
10.7 \& 11.8 \& 6 \& 5 \& 79

\hline New Haven. \& 131 \& 16.7 \& 20.0 \& 11 \& 16 \&

\hline New Orfeans \& 1,341 \& 11.6 \& 100 \& - 141 \& 133 \& 5

\hline Bronx Borough. \& 158 \& 9.5 \& 8.5 \& 12 \& 8 \& 48

\hline Brooklyn Borough \& 419 \& 9.9 \& 0.4 \& 45 \& 40 \& 48

\hline Manhettan Borough \& 623 \& 14.4 \& 11.4 \& 79 \& 68 \& ${ }_{5} 7$

\hline Queans Borough. \& 96 \& 9.0 \& 20 \& 10 \& 8 \& ${ }_{73}$

\hline Richmond Borough. \& 45 \& 18.0 \& 9.8 \& ${ }^{4}$ \& 8 \& 52

\hline Newark, N. J.... \& 90 \& 10.5 \& 19.2 \& 1 \& 4 \& 107

\hline Norfote \& 44 \& 12.3 \& 10.8 \& 8 \& 8 \& 100

\hline Oklahoma City \& 20 \& 10.0 \& \& 2 \& \&

\hline Omaha -- \& 45 \& 11.3 \& 8.7 \& 4 \& 4 \& 43

\hline Paterson. \& 36 \& 13.3 \& 1.5 \& 1 \& 2 \& 17

\hline Philadelphia \& 400 \& 12.3 \& 13.7 \& 57 \& 80 \& 73

\hline Pittsburgh..- \& 204 \& 17.0 \& 15.0 \& 19 \& 29
3 \& 64

\hline Portland, Oreg- \& 58
68 \& 10.5 \& 13.3 \& 5
6 \& 12 \& 49

\hline Richmand. \& 49 \& 13.9 \& 14.1 \& 10 \& 6 \& 121

\hline Rochester. \& 65 \& 10: 4 \& \& 4 \& \& 32

\hline St. Louis \& 217 \& 13.9 \& 12.5 \& 18. \& 25 \&

\hline St. Paut \& 49 \& 10.5 \& 12.1 \& 2 \& 3 \& 17

\hline Salt Lake City ${ }^{4}$ \& 30 \& 15.8 \& 18.2 \& 2 \& 3 \& 40

\hline San Antonio.. \& 59 \& 16. 1 \& 15. \& 18 \& 14 \&

\hline San Francisco. \& 142 \& 13.5 \& 13.1 \& 8 \& 7 \& 58

\hline Scheneetady. \& 13 \& 6.7 \& 8.4 \& 2 \& 1 \& 3

\hline Seattle \& ${ }_{22}$ \& 11.4 \& 8.4 \& 1 \& 3 \& 27

\hline Somerane. \& 26 \& \& \& 4 \& 2 \& 88

\hline Springfold, Mass \& 34 \& 11.9 \& 14.1 \& 4 \& 3 \& 68

\hline Syracusa......- \& 42 \& 11.6 \& 15.8 \& 4 \& 9 \& 50

\hline Treoma. \& 24 \& 10.6 \& 8.2 \& 2 \& 0 \& 48

\hline Toledo. \& 44 \& 8.3 \& 11.0 \& 4 \& 8 \& 38

\hline Trentor.-. \& 38 \& 14.5 \& 16.0 \& 4 \& 8 \& 10

\hline Utica \& 19 \& 9.4 \& \& ${ }_{23}^{4}$ \& ${ }_{26}^{28}$ \& 138

\hline Washington, D. C. \& 131 \& 14.0 \& 14.0 \& 2 \& 2 \& 23

\hline Waterbury -..-. \& 13
32 \& 13.9 \& 11.5 \& 9 \& 5 \& 67

\hline Werceator \& 48 \& 12.8 \& 130 \& 5 \& 10 \& ${ }^{60}$

\hline Yenkers.. \& 24 \& 11.4 \& 5.8 \& $\frac{1}{3}$ \& 1 \& ${ }_{41}^{22}$

\hline Youngstown. \& 32 \& 10.8 \& \& 3 \& 4 \& 41

\hline
\end{tabular}

PREVALENCE OF DISEASE.

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring.

UNITED STATES.

CURRENT WEEKLY STATE REPORTS.

These reports are preliminary, and the figures are subject to change when later returns are received by
the State health officers.

Reports for Week Ended November 8, 1924.

Cases.Chictabama. Cases.pox
Diphtheria 59
Dysentery 1
Influenza 35
Malaria 53
Measles 9
Mumps 4
Ophthalmia neonatorum 1
Pellagra 5
Pneumonia 44
Scarlet fever 36
Smallpox 16
Tetanus 1
Trachoma 1
Tuberculosis 21
Typhoid fever 20
Whooping cough 14
ARIZONA.
Chicken pox 3
Diphtheria 3
Malta fever 1
Mumps 21
Poliomyelitis 1
Scarlet fever 18
Smallpox 5
Tuberculosis 3
Typhoid fever 1
Whooping cough 4
ARKANSAS.
Chicken pox 11
Diphtheria 19
Hookworm disease 1
Influenza 66
Malaria 70
Measles 7
Mumps 4
Paratyphoid fever 2
Pellagra 2
Scarlet fever 5
Smallpox 11
Tuberculosis 10
Typhoid fever 24
Whooping cough 10
californa.
Cerebrospinal meningitis:
Fresno. 1
Oakland. 1
San Francisco 1
Diphtheria 211
Influenza 15
Lethargic encephalitis: Los Angeles 1
Oakland 2
Measles 27
Plague (pneumonic) 2
Poliomyelitis:
Los Angeles 4
Los Angeles County 1
Oakland. 3
San Diego County 1
Scarlet fever 131
Smallpox:
Fresno County 17
Los Angeles 18
Los Angeles County 12
Sacramento 8
Susanville 13
Scattering 38
Typhoid fever 27
Typhus fever-Los Angeles 2
colorado.
(Exclusive of Denver.)
Cerebrospinal meningitis 1
Chicken pox 83
Diphtheria 16
Measles. 2
Mumps. δ

COLORADO-continued.
Cases.
Paratyphoid fever 2
Pneumonia 8
Scarlet fever 25
Tuberculosis 141
Typhoid fever 6
Whooping cough 7 7
CONNECTICUT.
Cerebrospinal meningitis 1
Chicken pox 35
Conjunctivitis (infectious) 1
Diphtheria 67
Cerman measles 3
Influenza 8
Lethargic encephalitis 1
Measles 5
Mumps 14
Pneumonia (lobar) 31
Poliomyelitis 1
Scarlet fever 110
Septic sore throat 4
Smallpox 1
Tubercuiosis (all forms) 40
Typhoid fever 2
Fhooping cough 83
DELAWARE.
Chicken pox 2
Diphtheria 12
Preamonia 1
Scarlet fever 4
Taberculosis 3
Whooping cough 1
DISTRICT OF COLUMEAA.
Chicken pox 14
Diphtheria 8
Influenza. 2
Measles 2
Poliomyelitis 1
Scarlet fever. 17
Tuberculosis 27
Typhoid fever 1
Whooping cough 8
momed.
Diphtheria 14
Influenza. 1
Malaria 8
Pneumonia 1
Scarlet fever 4
Trachoma 2
Typhoid fever 8
grorala.
Chicken pos -
Diphtheria 14
Dysentery (bacillary) 1
Hookworm disease 2
Imfuenza. 2
Malaria 17
Mumps ,
Pneumonia 5
Searlet fever 1
Smallpox 5
Tuberculosis
Typhoid fever 6
Whooping cough 11
Diphtheria: illnNOIS.
Cases.
Cook County 9
Rock Island County. 10
Sangamon County
Scattering 50
Influensa 10
Iethargic encophalitio-Cook County 8
Measles 6
Pnelumonia 124
Poliamyelitis:
Cook County 3
McHenry County 1
Peoria County 1
Scarlet fever:
Cook County 103
Kankakee County 12
Scattering 25
Smalipox 15
Tubercuilosis 125
Typhoid fever. 32
Whooping cough 150
indiana.
Chicken pox 110
Diphtheria:
Allen County 17
Scattering 8
Influenza:
Knox County 12
Scattering 3
Measles 22
Mumps 8
Pneumonia 16
Poliomyelitis 4
Scarlet fever:
Allen County 12
Bartholomew County 10
Huntington County 11
St. Joseph County 12
Tippecanoe County 10
Wayne County 9
Scattering 74
Smallpox 23
Tuberculosis 25
Typhoid fever 25
Whooping cough 17
10wA.
Diphtheria 36
Poliomyelitis-Cedar Falls 2
Scarlet lever 60
8malipox 23
Typhoid fever 1
EANsas.
Cerebrospinal meningitis 1
Chicken par 9
Diphtheria 8
Influenza 10
Measles 3
Mumps. 6
Proumonia 10
Scarlet fever 53
Tuberculosis 4
Typhoid fever 16
Whooping cough 17

louisjana.	Cases.		macmines.	Cases.
Diphtheria		Diphtheria.		
Hookworm disease.	3	Measles.		
Influenza	. 7	Pneumonia.		
Malaria	3	Scarlet fever.		
Plague (bubonic)	1	Smallpox		
Pneumonia	30	Tuberculosis.		
Scarlet fever.	13	Typhoid fever		
Smallpox.	7	Whooping cough		8
Tuberculosis.	28			
Typhoid fever..	-- 23		minnesota	
matne.		Cerebrospinal m	gitis	
Chicten por maine.		Chicken pox.		
Chicken pox	30	Diphtheria.		
Diphtheria.	6	Measles.....		
Influenza	- 1	Pneumonia.		
Measles.	6	Poliomyelitis.		
Mumps	30	Scarlet fever..		
Pneumonia	10	Smallpox...		
Poliomyelitis	6	Tuberculosis.		
Scarlet fever.	35	Typhoid fever.		
Tuberculosis.	14	Whooping cough		
Typhoid fever.	6			
Whooping cough	- 8		MISSISSIPPI	
		Diphtheria		40
maryland.		Poliomyelitis.		
Chicken pox	53	Scarlet fever.		16
Diphtheria.	56	Smallpox.		13
Dysentery..	1	Typhoid fever.		15
German measles.	1			
Impetigo contagiosa	1		MISSOURI.	
Influenza.	31	Chicken pox		15
Malaria.	-1	Diphtheria		109
Measles.	6	Influenza.		11
Mumps.	9	Malar		2
Ophthalmia neonatorum	1	Measles.		- 2
Paratyphoid fever.	1	Mumps.		9
Pneumonia (all forms).	42	Pellagra.	--	- 1
Poliomyelitis...	4	Pneumonia...		13
Scariet fever...	58	Poliomyelitis		- 3
Septic sore throat	2	Scarlet fever....-		205
Tetanus...........	1	Septic sore throat		1
Tuberculosis.	55	Smallpox-		4
Typhoid fever.--	30	Tetanus.		1
Vincent's angina.	1	Trachoma...		3
Whooping cough.	83	Tuberculosis..		33
		Typhoid fever.		19
- Massachusetts.		Whooping cough.		7
Anthrax.	2		montana.	
Chicken pox.	152	Diphtheria.		18
Conjunctivitis (suppurative)	19	Poliomyelitis:		
Diphtheria.	152	Belgrade.		1
German measles.	7	Bozeman.		- 1
Inflaenza.	4	Scarlet fever..		10
Measles.	79	Smallpox.....		2
Mumps.	47	Typhoid fever.		1
Ophthalmia neonatorum.	21			
Pneumonia (lobar)	85		W JRESEY.	
Poliomyelitis.	7	Cerebrospinal men	itis.	1
Scarlet fever.	186	Chicken pox.		140
Septic sore throat	2	Diphtheria...		85
Tetanus..	2	Influenza....		10
Trichinosis.	- 1	Leprosy		1
Tuberculosis (all forms)	134	Measles.		34
Typhoid fever...	11	Pneumonia..		106
Whooping cough.	78	Scarlet fever.		127
${ }^{1}$ Week ended Friday.				

NEW JERARY-continued. Cases.
Smallpox-... 1
Typhoid fever 11
Whooping cough 153
NEW MEXICO.
Chicken pox 14
Diphtheria
Measles 48
Mumps 1
Pneumonia 4
Scarlet fever 3
Septic sore throat 1
Tuberculosis 40
Typhoid fever 15
Whooping cough 3
NEW YORE
(Exclusive of New York City.)
Cerebrospinal meningitis 2
Diphtheria 130
Influenza 19
Lethargic encephalitis 3
Measles 114
Pneumonia 105
Poliomyelitis 18
Scarlet fever 254
Smallpox 77
Typhoid fever 35
Whooping congh 209
NORTH CAROLINA.
Chicken pox 101
Diphtheria 185
German measles 6
Measles 36
Scarlet fever 77
Smallpox 11
Typhoid fever 13
Whooping cough 102
orlahoma.
(Exclusive of Oklahoma City and Tulsa.) 33
Smallpox 2
Typhoid fever 40
oregon.
Chicken pox
Chicken pox 36 36
Diphtheria:
Portland 26
Scattering 18
Measles 3
Mumps 2
Pneumonia 17
Poliomyelitis 3
Scarlet fever:
Portland 8
Union County 11
Scattering 13
Smallpox 4
Tuberculosis 8
Typhoid fever 11
SOUTH DAKOTA.Chicken pox
7
${ }^{1}$ Deaths.
Mumps
Cases. 9
Scarlet fever
Smallpox. 25 25
Trachoma 2
Typhoid fever. 2
Whooping cough 86
TEXAS.
Chicken pox 38
Dengue
9
9
Diphtheria 66
Dysentery (epidemic) 16
Influenza 183
Malta fever. 9
Measles 11
Mumps 13
Ophthalmia neonatorum 4
Paratyphoid fever 2
Pellagra 25
Pneumonia 18
Poliomyelitis 2
Scarlet fever 54
Smallpox 32
Tetanus. 1
Trachoma 12
Tuberculosis 141
Typhoid fever 84
Typhus fever 4
Whooping cough 146
VERMONT.
Chicken pox 9
Diphtheria 3
Measles. 54
Mumps 4
Pneumonia 1
Scarlet fever 12
Whooping cough 14
washington.
Chicken pox 79
Diphtheria 33
Measles 4
Mumps 27
Poliomyelitis:
Adams County 1
Benton County 1
Clarke County 1
Cowlitz County 1
King County 8
Pierce County 1
Skagit County 1
Snohomish County. 2
Stevens County 2
Thurston County 1
Yakima County 2
Aberdeen 1
Seattle. 2
Spokane 2
Tacoma 2
Yakima 2
Scarlet fever 58
Smallpox 11
Tuberculosis 45
Typhoid fever. 7
Whooping cough 6
$14467^{\circ}-24 \dagger$ 3

Vitar vinomal. Crises.
Diphtheris 3
Bearlet fever 18
Typhoid fever 8
WISCONSIN.
Milwaukee:
Chicken pox 60
Diphtheria 23
German measles 8
Influenza 1
Measles 81
Mumps 22
Ophthalmia neonatorum 1
Pneumonia 2
Scarlet fever. 10
Tuberculosis. 23
Whooping cough 19
Scattering:
Cerebrospinal meningitis 2
Chicken pox 166
Diphtheria 41
German measles. 1

Scattering-Continued.

Influonsa 8
Measles 25
Mumps 31
Pneumonia 8
Poliomyelitis 9
Scarlet fever 94
Smallpox 13
Tuberculosis 14
Typhoid fever 2
Whooping cough 97
WYOMING.
Chicken pox 12
German measles 1
Impetigo contagiosa 1
Mumps 10
Scarlet fever 7
Smallpox 4
Tuberculosis 1
Typhoid fever 1
Whooping cough 2

Reports for Week Ended November 1, 1924.

CALIFORNIA.Casos.
Botulism-Oakland 1
Cerebrospinal meningitis:
Los Angeles 3
San Jose. 1
Diphtheria 146
Influenza. 15
Lethargic encephalitis:
Los Angeles 1
Palo Alto
San Francisco 1
Measles 19
Plague (bubonic)-Los Angeles 1
Plague (pneumonic)-Los Angeles 134
Poliomyelitis:
Alamada 1
Alhambra 1
Benicia 1
Contra Costa County 3
Los Angeles 2
Los Angeles County 2
Oakland 1
San Diego 1
San Francisco 3
Sonoma County 1
Tuolumne County 1
Scarlet fever 92
Smallpox:
Fresno 18
Los Angeles 21
Sacramento 10
Scattering 20
Typhoid fever 18
DISTRICT OF COI UMBIA.
Cbicken pox 5
Diphtheria 5
Searlet fever 13
Tuberculosis 27
Typhoid fever 5
Whooping cough 3
125 Deaths.Cases.
Cerebrospinal meningitis 1
Chicken pox:
Madison County 11
Scattering 41
Diphtheria:
Clark County 11
Lake County 12
Scattering 70
Influenza 24
Measles. 11
Mumps 13
Pneumonia 9
Poliomyelitis 4
Scarlet fever:
Huntimgton County 25
Lake County 8
St. Joseph County 32
Scattering 65
Smallpox 18
Tuberculosis 25
Typhoid fever 32
Whooping cough 25
MINNESOTA.
Chicken pox 97
Diphtheria 125
Measles 12
Pneumonia 2
Poliomyelitis 5
Scarlet fever 182
Smallpox 90
Tuberculosis 48
Typhoid fever 2
Whooping cough 19
NEBRASKA.
Chicken pox 10
Diphtheria 36
Measles 1
Pncumonia 1

SUMMARY OF MONTHLY REPORTS FROM STATES.

The following summary of monthly State reports is published weekly and covers only those States from which reports are received during the current week:

PLAGUE ON STEAMER ARRIVING AT NEW ORLEANS.
On October 28 a vessel arrived at New Orleans from Barcelona, Spain, via Oran, Algeria, having a case of bubonic plague on board. The patient was isolated and the vessel fumigated to destroy rodents. The diagnosis of plague in this patient has been confirmed by bacteriological examination. The last report stated that he had developed pulmonary symptoms and that plague bacilli were present in the sputum. Twenty-two rats were recovered after fumigation of the vessel and are being examined for plague infection. The personnel of the vessel are still under observation (November 8).

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES.

Diphtheria.-For the week ended October 25, 1924, 35 States reported 2,162 cases of diphtheria. For the week ended October 27, 1923, the same States reported 3,226 cases of this disease. One hundred and two cities, situated in all parts of the country and having an aggregate population of more than $28,700,000$, reported 984 cases of diphtheria for the week ended October 25, 1924. Last year, for the corresponding week, they reported 1,419 cases. The estimated expectancy for these cities was 1,425 cases of diphtheria. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Measles.-Thirty-two States reported 627 cases of measles for the week ended October 25, 1924, and 3,103 cases of this disease for the week ended October 27, 1923. One hundred. and two cities reported 197 cases of measles for the week this year and 668 cases last year.

Scarlet fever.-Scarlet fever was reported for the week as follows: Thirty-five States-this year, 2,271 cases; last year, 2,339 cases. One hundred and two cities-this year, 932 cases; last year, 843 cases; estimated expectancy, 728 cases.

Smallpox.-For the week ended October 25, 1924, 35 States reported 448 cases of smallpox. Last year, for the corresponding week, they reported 316 cases. One hundred and two cities reported smallpox for the week as follows: 1924, 134 cases; 1923, 151 cases; estimated expectancy, 48 cases. These cities reported 10 deaths from smallpox for the week this year.

Typhoid fever.-Five hundred and twenty-six cases of typhoid fever were reported for the week ended October 25, 1924, by 34 States. For the corresponding week of 1923 the same States reported 530 cases. One hundred and two cities reported 133 cases of typhoid fever for the week this year, and 141 cases for the week last year. The estimated expectancy for these cities was 144 cases.

Influenza and pneumonia.-Deaths from influenza and pneumonia (combined) were reported for the week by 102 cities as follows: 1924, 494 deaths; 1923, 528 deaths.

City reports for week ended October 25, 1924.
The "estimated expectancy" given for diphtheria, poliomyelitis, scarlet fever, smallpox, and typhoid fever is the result of an attempt to ascertain from previous occurrence how many cases of the disease under consideration may be expected to occur during a certain week in the absence of epidemics. It is based on reports to the Public Health Service during the past nine years. It is in most instances the median number of cases reported in the corresponding week of the preceding years. When the reports include several epidemics, or when for other reasons the median is unsatisfactory, the epidemic periods are excluded and the estimated expectancy is the mean number of cases reported for the week during nonepidemic years.

If reports have not been received for the full nine fears, data are used for as many years as possible, but no year earlier than 1915 is included. In obtaining the estimated expectancy, the figures are smoothed when necessary to avoid abrupt deviations from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectancy.

Division, State, and city	Chicken pox, cases re ported.	Diphtheria.		Influenza.		Mea- sles, cases reported.	$\begin{aligned} & \text { Mumps, } \\ & \text { cases } \\ & \text { re- } \\ & \text { ported. } \end{aligned}$	Pneumonia, deaths, reported.	Scarlet fever.	
		Cases, estimated expectancy.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$	Cases reported.	Deaths reported.				Cases, estimated expectancy	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$
NEW ENGLAND.										
Maine: Lewiston.	7	2	0	0	0	1	0	0	1	1
Portland..---	2	1	6	0	0	0	13	1	1	0
New Hampshire: Concord	0	0	0	0	0	0	0	1	0	2
Nashua.----	0	1	1	0	0	0	0	1	1	1
Vermont:										
Barre	0	0	0	0	0	0	3	0	0°	0
Burlington.	10	1	0	0	0	0	0	1	1	0
Massachusetts:									1	
Boston....	16	59	42	1	0	18	3	13	27	20
Fall River	4	3	6	1	1	3	1	4	1	2
Springfield.	1	5	2	0	0	- 1	4	0	5	11
Worcester.-	3	9	8	0	0	0	1	0	7	7

City reports for week ended October 25, 1924.

Division, State, and city.	Chicken pox, cases reported.	Diphtheria.		Infuenza.		Measles, cases reported.	$\begin{aligned} & \text { Mumps, } \\ & \text { cases } \\ & \text { re- } \\ & \text { ported. } \end{aligned}$	Pneumonia, deaths, reported.	Scarlet fever.					
		Cases, estimated expectancy.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$	Deaths reported.				Cases, estimated expectancy.	$\begin{gathered} \text { Cases } \\ \text { re- } \\ \text { ported. } \end{gathered}$				
NEW ENGLANDcontinued.														
Rhode Island:														
Pawtucket...--	0	2	1	0	0	0	0	0	0	3				
Providence....-	0	11	6	0	0	2	0	4	4	1				
Connecticut:														
Bridgeport....-	0	10	10	0	0	0	0	0	4	6				
Hartford...-. --	0	9	6	0	0	0	2	1	3	6				
New Haven..--	1	6	2	0	0	4	0	3	4	10				
MIDDLE ATLANTIC.														
New York:														
Buffalo.		28	12	0	0	26		6	14	17				
New York .-..-	0	153	88	10	5	15	8	138	67	72				
Rochester.....-	1	14	0	0	1	0	3	4	5	9				
Syracuse......-	13	14	6	0	0	1	0	0	9	6				
New Jersey:	4	9	11	0	0	0	0	1	2	5				
Newark.	8	19	8	2	0	4	5	9	10	10				
Trenton...-.-.---	0	6	4	0	1	0	0	4	0	0				
Pennsylvania:														
Philadelphia..-	32	68	68		2	27	13	36	37	57				
Pittsburgh	90	41	66 5	0	0	19	14	28	22	37 0				
E. NORTH CENTRAL.														
Ohio:														
Cleveland.....--	37	50	18		1	2	1	8	24	18				
Columbus.-.-.--	6	10	4	0	0	0	0	6	9	14				
Toledo...-.-.---	10	18	14	0	0	3	2	1	11	6				
Fort Wayne.---	0	4	10	0	0	4	0	0	11	4				
Indianapolis .--		25	7	0	0	2		3	10	7				
South Bend	2	3	7	0	0	0	- 0	0	2	4				
Terre Haute..--		5	3	0	0	1		0	2	3				
Illinois:														
Chicago........-	98	175	42	5	2	29	23	35	99	70				
Cicero....--...-	2	6	2	0	0	0	2	1	2	4				
Springfield....-		2	7	0	0	2		1	3	1				
Michigan:														
Detroit....-...--	38	84	38	0	0	7	11	14	57	44				
Flint............	0	14	2	0	0	0	1	1	8	9				
Grand Rapids.	4	9	7	0	0	0	1	1	7	8				
Saginaw.......-	12	3	1	0	0	1	0	0	2	1				
Wisconsin:														
Madison .-....--	3	2	0	0	0	0	13	1	1	1				
Milwaukee...--	46	29	18	3	1	7	11	0	25	10				
Racine..	2	4	2	0	0	0	0	3	7	4				
Superior------.	1	1	0	0	0	0	0	0	2	3				
W. NORTH CENTRAL.														
Minnesota:														
Duluth .-......-	17	6	2	0	0	0	0	4	3	27				
Minneapolis.--	48	27	40	0	0	1	4	1	21	52				
St. Paul...--.--		22	21	0	0	2	--	4	8	13				
Iowa:														
Davenport.-..--	3	2	3	0	----	0	0	-----	1	0				
Des Moines...-	0	9	2	0	-	0	0	----	13	4				
Sioux City .-..--	6	3	2	0	--	0	0		2	1				
Waterloo...-..--	0	2	0	0		0	0		4	0				
Missouri:														
St. Joseph--	1	5	2	0	0	0	0	2	3	2				
St. Louis	14	84	48	0	0	0	4		28	139				
North Dakota:														
Fargo...-.-..--	3	0	0	0	0	0	0	1	2	1				
Grand Forks.--	0	1	0	0		0	0		2	0				
Aberdeen.....-	5		0	0		0	0			1				
Sioux Falls...----	0	1	2	0	0	0	0	0	1	0				
Nebraska:														
Lincoln........-	2	3	10	0	0	0	0	0	1	0				
Omaha-..---.-.-	10	11	13	0	0	0	0	4	4	4				
Kansas:														
Topeka........--	2	3 7	2	0	0	0	4	0	2 4	1				

City reports for unek ended October 26, 1984-Continued.

Cuty reports for week ended October 25, 1924-Continued.

${ }^{2}$ Pulmonary only.

City reports for ateek ended October 25, 1924-Continued.

Division, Stata, and city.	Population July 1, 1923, estimated.	Emalipox.				Typhoid fever.								
				Deaths reported.										
east north central														
Ohio:														
Cincinnati	406, 312	1	1	0	13	1	0	0	0	122				
Cleveland.	888, 519	1	0	0	5	3	2	1	17	116				
Columbus	261, 082	0	5	0	1	2	0	2	0	81				
Indiana:														
Indianapolis.	342, 718	1	1	0	4	1	0	0	0	90				
South Bend.	76, 709	0	0	0	0	0	1	0	0	9				
Terre Baute.	68, 939	0	0	0	1		0	0		16				
Cicero.	2, 55,968	0	0	0	0	0	0	0	2	2				
Flint.	117, 968	1	1	0	2	1	0	0	1	22				
Grand Rapids	145, 947	1	2	0	3	0	0	0	0	25				
Waginaw .-.-.	69, 754	0	0	0	0	1	0	0	0	9				
Milwaukee	484,595	3	0	0	7	1	0	0	15	77				
Racine.-	64, 393	0	3	0	0	1	0	0	7	8				
Superior	${ }^{1} 39,671$	1	0	0	1	0	0	0	0	7				
West north central.														
Minnesota:														
Duluth..	106,289	1	0	0	1	0	0	0	0	12				
Minneapolis	409, 125	2	43	7	9	1	1	0	1	80				
Iowa:														
Des Moines.	140, 323	1	0			0	0		0					
Sioux City	79, 662	1	0			0	0		1					
Kansas City	351, 819	1	0	0	6	2	0	0	3	80				
St. Joseph.	73. 232	0	0	0	1		0							
St. Louis..	803, 853		2	0	6	4	3	0	7	193				
Fargo \qquad Grand Forks	24,841 14,547	0	0	0	0	0	0	0	0	7				
South Dakota:														
Aberdeen.	15, 829		0				0							
Sioux Falls.	29, 206	0	0	0	0	0	0		0	2				
Nebraska:		0												
Omaha.	204, 382	1	2	0	0 1	0 1	0	0	0 1	9 43				
Kansas:														
Topeka	52, 5.55	0	0	0	0	0	,	0		11				
Wichita..	79, 261	1	0	0	0	0	0	0	9	18				
SOUTH AtLantic.														
Delaware:														
 Maryland: 117,728 0 0 0 0 2 2 0														
Baltimore-	773, 580	0	0	0	14	7	4	1	39	203				
Cumberland.	32,361	0	2	0	0	1	0	0		12				
District of Columbia:														
							5	0	1					
Norfolk.-	159, 089	0	0	0	3	1	0	0						
Richmond...	181, 044	0	0	0	2	1	0	0	1	50				
Huntington.	57, 918	0	0	0	1	0	0	0	0	15				
Wheeling.-	156.208	0	0	0	0	1	2	θ	0	12				

${ }^{1}$ Population Jan. 1, 1920.

City reperts for week ended October 25, 1924-Continued.

Division, State, and city.	$\begin{gathered} \text { Popula- } \\ \text { ton, } \\ \text { July 1, } \\ \text { r923, } \\ \text { estimated. } \end{gathered}$	Smallpox.				Typhoid fever.								
							$\begin{aligned} & \text { 『i } \\ & \text { む } \\ & \text { O } \\ & \text { OL } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Deaths reported.						
south athantic-centinued.														
North Carolina:														
Raleigh .-.	${ }_{35}^{29,171}$	1	0	0	2	0	0	0	5					
Wilmington-...	36, 56	1 0	1	0	0	0	1	0	0	8				
South Carolina:														
Charleston.	71,245	0	0	0	2	1	2	0	2	21				
Cohumbia	39, 688	0	0	0	2	1	0	0	7	21				
Greenville.	25,789	0	0	0	0	0	1	0	0	6				
Atlanta-	15,937	0	0	0	0	0	0	0	0^{-}	2				
Savannah.	89, 448	0	0	0	1		1	2	0	29				
St. Petersburg	24,403 56.050	0	0	0	0 2	0	0	0	0	${ }_{11}^{6}$				
east south central. Kentucky:														
Covington.-----------.	57, 877	0	0	0	3		0	0	0	12				
Lexington	43,673 257671	0	0	0	1	0	0	0	0	15				
Tennessee:														
Nashville.	121, 128	0	0	0	4	3	4	1	3	54				
Alabama:														
Mabile.	83, 858	0	0	0	4	1	0	0		18				
Montgomery.	45, 383	0	0	0	0	0	0	0	0	11				
West south central.														
Louisiana: 404.50														
New Orleans.	404, 575	1	0	0	13	3	3	1	4	112				
Shreveport.	54, 590		0	0	1		1	0	0	28				
Oklahoma:														
Tulsa.-.	102,018	0	0	0	0	1	0	0	0					
Texas:														
Dallas.	177, 274	0	0	0	4	2	0	1		43				
Galveston	46,877	0	0	0	0	0	3	0	0	12				
Houston.	154, 970	0	2	0	0	1	1	0	0	38				
San Antonio	184, 727		0	0	6	0	0	0		39				
Montana: mountain.														
Breat Fails	16, 927	0	0	0	0	0	0	0	0	6				
Great Falls.	27,787	1	0	0	0	0	2	0	0	4				
Helena	${ }^{1} 12,037$	0	0	0	0	0	0	0	0	6				
Boiso.	22, 806	1	0	0	0	1	0	0	0	2				
Colorado:														
Denver	272, 031	3	0	0	16	1.	0	1	2	90				
Pueblo...	43, 519	0	0	0	0	1	0	0		10				
New Mexico: Albuquerque	16,648	0	0	0	2	2	0	0		5				
Utah:														
Salt Lake City	126, 241	2	1	0	2	2	8	2	0	37				
Nevada: Reno.	12, 429	0	0	0	0	0	0	0	0	3				
Washington: PACIFIC.														
Seattle...	${ }^{1315,685}$	1	1			1	1		4					
Spokane	104, 573	5	1			1	1		1	---				
Tacoma	101, 731	1	1			0	1		0					
Oregon: Portland	273, 621	3	0	0	1	2	2	1	0					
California:														
Los Angeles.	666, 853	1	17	1	22	4	1	0	21	191				
Sacramento.	69,950	0	7	0	1	1		0	0	14				
San Francisco................	539, 038	0	0	0	7	2	1	0	2	111				

[^8]Cily reperts for week ended October 25, 1924-Continued.

The following table gives a summary of the reports from 105 cities for the 10 -week period ended October 25, 1924. The cities included in this table are those whose reports have been published for all 10 weeks in the Public Health Reports. Eight of these cities did not report deaths. The aggregate population of the cities reporting cases was estimated at nearly $29,000,000$ on July 1, 1923, which is the latest date for which estimates are available. The cities reporting deaths had more than $28,000,000$ population on that date. The number of cities included in each group and the aggregate population are shown in a separate table below.

Summary of weekly reports from cities, August 17 to October 25, 1924.
diphtheria cases.

	1924, week ended-									
	Aug. 23.	Aug. 30.	Sept. 6.	Sept. 13.	Scpt. 20.	Sept. 27.	Oct. 4.	Oct. 11.	Oct. $18 .$	Oct. 25.
Total	494	480	455	521	643	769	757	883	036	988
NewEngland	48	35	49	${ }^{1} 35$	56	55	56	77	82	89
MiddleAtlantic	189	167	139	139	177	255	198	209	259	228
East North Central	88	${ }^{2} 69$	85	88	${ }^{3} 125$	151	134	174	176	176
West North Central	49	50	47	91	90	92	116	126	136	149
South Atlantic.	39	${ }^{4} 68$	70	${ }^{5} 73$	94	89	97	142	121	172
East South Central	9	8	7	7	13	22	20	28	42	41
West South Central	15	11	10	18	13	24	23	26	28	36
Mountain.-....-.	14	16	19	12	15	18	24 89	14	18	23
Pacific.-	43	56	29	58	60	73	89	87	74	74

MEASLES CASES.

SCARLET FEVER CASES.

Total	291	307	253	359	455	586	570	774	795	938
New England.	28	29	35	${ }^{1} 33$	38	46	55	89	99	121
Middle Atlantic	55	69	50	48	97	128	129	154	168	213
East North Central	74	274	68	97	${ }^{3} 99$	123	128	178	176	214
West North Central	75	58	48	104	142	172	148	218	227	253
South Atlantic.	21	426	22	${ }^{6} 24$	32	36	29	46	48	57
Esat South Central	13	9	2	6	14	17	13	21	11	14
West South Central.	5	5	5	10	10	8	13	17	16	17
Mountain.	4	17	3	10	9	16	18	15	19	13
Pacific.	16	20	20	27	14	40	37	36	31	36

[^9]Summary of weekly reports from cities, August. 17 to October 25,1924-Continued. smallpox cases.

	1924, week ended-									
	Aug.	Aug. 30.	Sept. 6.	Sept. 13.	Sept. 20.	Sept. 27.	Oct. $4 .$	Oct. 11.	Oct. 18.	Oct. 25.
Total	71	88	66	64	86	84	86	72	99	134
New Engind.	0	0	0	10	0	0	0	0	0	
Middle Atlantic....	3	11	4	2	3	6	8	3	0	5
East North Central.	20	${ }^{2} 12$	9	16	${ }^{2} 14$	27	23	21	30	19
West North Central.	5	25	9	11	23	19	15	21	27	64
South Atlantic.-.-.	4	42	5	${ }^{1} 2$	1	3	6	2	0	3
East South Central.	14	13	16	3	8	5	6	2	15	11
West South Central	1	1	1	4	3	1	0	0	3	2
Mountain.........	2	2	0	0	2	1	1	0	2	3
Pacific...	22	22	22	26	32	22	27	23	22	27

TYPHOID FEVER CASES.

INFLUENZA DEATHS.

Total	7	13	4	6	7	18	20	21	20	18
New England.	0	1	0	10	1	1	0	1	1	1
Middle Atlantic.	1	4	3	2	1	5	10	13	11	9
East North Central.	2	23	0	3	${ }^{3} 0$	2	4	4	3	5
West North Central.	0	0	0	0	1	1	1	0	2	0
South Atlantic...	3	42	1	51	1	3	1	1	1	2
East South Central	0	1	0	0	0	3	1	0	1	0
West South Central	1	2	0	0	3	1	1	1	1	0
Mountain....	0	0	0	0	0	1	1	1	0	0
Pacific.	0	0	0	0	0	1	1	0	0	1

PNEUMONIA DEATHS.

[^10]Number of cities included in summary of weekly reports and aggregate population of cities in each group, estimated as of July 1, 19®3.

Group of cities.	Number of cities reporting cases.	Number of cities reporting deaths.	Aggregate population of cities reporting cases.	Aggregate population of cities reporting deaths.
Total	105	97	28, 898, 350	28, 140, 934
New England	12	12	2,098, 746	2,098, 746
Middle Atlantic.	10	10	10,304, 114	10, 304, 114
East North Central	17	17	7,032, 535	7,032, 535
West North Central	14	11	2, 515,330	2, 381, 454
South Atlantic.-	22	22	2, 566, 901	2, 566, 901
East South Central	7	7	, 911,885	911,885
West South Central	8	6	1,124,564	1,023, 013
Mountain.	9	9	546, 445	546, 445
Pacific.	6	3	1,797,830	1,875,841

FOREIGN AND INSULAR.

AUSTRALIA.

Typhus-Like Disease-Adelaide.

Information received under date of September 16, 1924, shows the presence at Adelaide, Australia, of a typhus-like disease which has been under observation since the year 1917. The disease was stated to resemble mild typhus at its outset and in subsequent development and pathological findings. The Weil-Felix reaction was stated to be invariably found after the first week in dilutions as high as 1 in 2,000 . No body-lice infestation was found.

BOLIVIA.

Communicable Diseases-La Paz-September, 1924.
During the month of September, 1924, 36 cases of communicable diseases, with 37 deaths, were reported at La Paz, Bolivia, including six deaths from dysentery, seven cases of smallpox with nine deaths, one case of typhoid fever, and one death from typhus fever.

BRAZIL.

Government Administration of Hospitals-Pernambuco.

According to information received under date of September 20, 1924, an agreement has been concluded between the directors of several hospitals and charitable institutions in the city of Pernambuco, Brazil, by which the government of the State of Pernambuco takes over the administration of the hospital for the insane, the isolation hospital, the tuberculosis hospital, and the Pasteur Institute, these institutions to be managed by the department of health of the State.

CANADA.

Communicable Diseases-Ontario-October 4-25, 1924 (Comparative).
During the period October 4 to 25, 1924, communicable diseases were reported in the Province of Ontario, Canada, as follows:

Disease.	1924.		1923.	
	Cases.	Deaths	Cases.	Deaths.
Cerebrospinal meningitis.		6		
Chancroid................--	${ }^{2}$		4	---.---.--
Chicken pox..........	324	24	196	13
Dysentery .-.-.........	6		6	2
German measles..	2		1	
Gonorrhea.-	140		242	
Influenza-.....---7litis.	4	4	22	9 3
Measles................	887		208	
Mumps.-.-	307		40	
Pncumonia-		137		90
Poliomyelitis (infantile paralysis)	307	3 3		8
Septic sore throat Smallpox	73		23	
Syphilis...--	85		130	
Tetanus.-.-	4	3		
Tuberculosis..	165	73	187	90
Typhoid fever	125	8	137	$\cdots 16$
Whooping cough.	174	3	185	7

COLOMBIA.

Measures Against Soil Pollution and Intestinal Infections.

Information received under date of September 19, 1924, shows that in February, 1920, an agreement was effected between the Colombian Government and the International Health Board for control of soil-pollution disease in the Republic. The agreement included the maintaining of scholarships in various schools in the United States for training in public-health methods. From June, 1920, to March, 1924, 257,633 persons were treated for various intestinal diseases in the departments of Antioquia, Cundinamarca, Boyaca, Huila, and Santander del Sur. The field covered 200 districts.

ESTHONIA.

Communicable Diseases-August, 1924.

During the month of August, 1924, 27 cases of diphtheria, 18 of scarlet fever, 107 of tuberculosis, and 92 of typhoid fever were reported in the Republic of Esthonia. Population, 1,107,059.

FINLAND.

Communicable Diseases-September, 1924.
During the month of September, 1924, communicable diseases were notified in Finland as follows:

Disease.	Cases.	Disease.	Cases.
Diphtheria.	90	Poliomyelitis (infantile paralysis)	
Dysentery .-.--------	52	Scarlet fever --......	63
Lethargic encephalitis.	${ }_{106}$	Typhoid fever---..--........	115

HAWAII.
 Plague-Infected Rat-Vicinity of Honokea.

A plague-infected rat was reported trapped at Paauhau Sugar Plantation, near Honokaa, Hawaii, October 11, 1924.

INDIA.

Communicable Diseases-Rangoon-Year 1923 (Comparative).
During the year 1923 certain communicable diseases were reported at Rangoon, India, as follows:

[^11]Diarrheal diseases and dysentery caused 838 deaths in 1923 and 939 deaths in 1922. Respiratory diseases other than tuberculosis caused 2,131 deaths in 1923 and 2,198 deaths in 1922.

Plague-Infected Rats.

During the year 1923 , 496,987 rats were destroyed at Rangoon. Of these, 17,323 were examined and 120 found plague-infected.

$$
\begin{gathered}
\text { INDO-CHINA. } \\
\text { Cholera-Plague-Smallpox-July, } 1924 \text { (comparative). }
\end{gathered}
$$

During the month of July, 1924, cholera, plague, and smallpox were reported in Indo-China as follows:

Cholera.-Cases, 20; deaths, 10; occurring in four Provinces. Corresponding period, 1923-cases, 42; deaths, 30.

Plague.-Cases, 26; deaths, 22; occurring in three Provinces. Corresponding period, 1923-cases, 34; deaths, 30.
Smallpox.-Cases, 119; deaths, 51; occurring in four Provinces. Corresponding period, 1923-cases, 268 (one European); deaths, 108 (one European).

Influenza.

During the same period 25 cases of influenza were reported in Indo-China, occurring in two Provinces-Laos and Tonkin. Some unreported cases were stated to have occurred during the corresponding period of 1923.

MADAGASCAR.

Plague-August 16-31, 1924.

During the period August 16 to 31, 1924, 17 cases of plague with 16 deaths were reported in the island of Madagascar. Of these, 1 case, with 1 death (septicemic), was reported at the town of Tananarive. The remaining cases occurred at other localities in Tananarive Province and were reported as bubonic, pneumonic, and septicemic in type.

MALTA.

Communicable Diseases-September, 1924.

During the month of September, 1924, cases of certain communicable diseases were reported in the island of Malta as follows: Lethargic encephalitis, 8 cases; typhoid fever, 40; and Malta fever (undulant), 80 cases.

MEXICO.

Vaccination-Antirabic Treatment-Merida.

Information dated October 6, 1924, shows the vaccination of approximately 300 persons, the sale of vaccine to 400 applicants, and the administration of 450 antirabic treatments at Merida during the month of August, 1924.

PANAMA CANAL.

Communicable Disease-September, 1924.
Communicable diseases were reported in the Panama Canal Zone, Colon, and Panama, during the month of September, as follows:

Disease.	Canal Zone.	Colon.	Panama.	Nonresident.	Total.
Chicken pox.	9		3		12
Diphtheria...		2	7		9
Dysentery-.		7	36	33	76
Malaria.....	59	7	6	21	93
Measles.	7	2	5	5	19
Meningitis			1		1
Mumps ---	5				5
Paratyphoid fever.		4	9		13
Poliomyelitis (infantile paralysis		1	1		2
Tuberculosis.......-.-............	4	4	12	5	25
Typhoid fever---				1	10
Whooping cough.	8	2			10

SUMATRA.
Malaria-Batoe Bahra-June and July, 1924.
Malaria has been reported at Batoe Bahra, island of Sumatra, as follows: Month of June, 1924, 251 cases with 14 deaths; month of July, 1924, 253 cases with 18 deaths.

$$
14467^{\circ}-24 \dagger-4
$$

CHOLERA, PLAGUE, SMALLPOX, TYPEUS PEVER, AND YELLOW FEVER.

The reports contained in the following tables must not be considered as complete or inal as regards either the lists of countries included or the figures for the particuiar countries for which reports are given.

Reports Received Daring Week Inded Norember 14, 1924. ${ }^{1}$
CHOLERA.

Place.	Date.	Cases	Deaths.	Remarks.
India				Aug. 24-Sept. 6, 1924: Cases,
Madras	Sept. 21-27.	15	8	14,047; deaths, 11,657.
Indo-China...				July 1-31, 1924: Cases, 20; deaths,
ProvinceAnnam	July 1-31.			10. Corresponding period, 1923: Cases, 42 deaths, 30 ,
Cambodia	J...do...	7	4	1923: Cases, 42; deaths, 30.
Cochin-Chin	--.-.-do..	7	5	
Siam. Tonkin.	do	3	1	
Siam: Bangkok.	Sept. 14-20...	1	1	

PLAGUE.

SMALLPOX.

[^12]CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELIOW FEVER-Continued.

Reports Received During Week Ended November 14, 1924-Continued.
SMALLPOX-Continued.

TYPHUS FEVER.

Reports Received from June 28 to November 7, 1924. ${ }^{1}$ Cholera.

Place.	Date.	Cases.	Deaths.	Remarks.
China: Shanghai India	Aug. 2-Sept. 6....-	1		Apr. 20-June 28, 1924: Cases,
Do.				June 29-Aug. 23, 1924: Cases,
Bombay	May 4-10...--...-	1		61,437; deaths, 36,124.
Cala	June 29-Sept. 13...	43	23	
Calcutta Do	May 11-June 28-Sept. 17.	182	259	
Madras.	June 1-21.........-	7	6	
Do.	June 29-Sept. 20..-	29	17	
Rangoon Do.	May 11-June 29-Aug. 23.	98 24	76 22	

[^13]
Cholera, plague smalapox, TYPiUS fever, and yeelow FEVER-Continued.

Reports Received from June 28 to November 7, 1924-Continued. CHOLERA-Continued.

PLAGUE,

Cholera, Plague, SMallpox, TYPHUS FEVER, AND YELLOW
Reports Received form June 28 to November 7, 1924-Continued.
PLAGUE-Continued.

Cholera, plague, smallpox, typhus fever, and yellow FEVER-Continned.

Reports Received from Jane 28 to Nowember 7, 1924-Continued.
PLaGUE-Continued.

SMALLPOX.

CHOLRRA, PLAGUE, SMALIPOX, TYPGUS FEVFR, AND YELLOW FEVER-Continued.

Reperts Received Irem Jume 28 to November 7, 1924-Continued.
 gMalurox-Continned.

Place.	Date.	Cases.	Deaths.	Ramarks.
Brazil-Continued.	May 18-24	2		
Do--	July 20-Aug. 30..-	5		
British East Africa:				
Keny Mombasa...............	May 4-31.	3		
Tanganyika Territory.	June 15-21.........	1		
	Aug. 17-23......	1		
Entebbe...........	Feb. 1-29........	2		
British South Africa: Northern Rhodesia \qquad	May 6-June 30.	74	1	Natives.
Do......	July 1-Sept. 8...	49		
Canada: ${ }_{\text {British }}$				
British Columbia	ct. 18... June 15-28	11		
Do....-.	June 29-0ct. 11....	43		Not including suburbs.
Victoria.	Aug. 3-9.-........-	4		
Manitoba- Winnipeg	July 13-Aug. 1....-	3		
New Brunswick-				
Restigouehe County...	June 1-30...	7		
Do..-	July 6-Scpt. 6	21		
Westmoreland County.	Aug. 17-23..	1		
Ontario--.....................	July 20-26	1		June 1-30, 1924: Cases, 24; July 1-Sept. 27, 1924: Cases 20.
Windsor.	Jnne 22-28.....	1		
Quebec-				
Montreal...-............	June 8-14.......---	1		
Ceylon: Do.-	Sept. 14-20...----	1		
Colombo.	July 6-12..........-	1		
Chile:	June 11			
Do	Aug. 24-30.	1		cases.
Valparaiso....................	June 1-7.		1	This report covers the two prin-- cipal districts of Valparaiso.
China:				
Amoy..	May 11-June 28..-			Present.
Do.	June 29-Sept. 13...			Do.
Antung	June 9-29.........-	41	3	
Chungking				Do.
Do.	June 29-Sept. 13...			Do.
Foochow.	May 18-June 28.			Do.
Do..	July 6-Aug. 29--			Do.
Hongkong	May 4-June 28...-	3	$\stackrel{3}{3}$	
Dairen.-	May 12-June 28...	22	7	
Do.	June 29-Aug. 3....	5	1	
Harbin	May 13-June 23..-	2		
Nanking	May 18-June $28 .$.			Do.
Do.	July 6-Sept. 13...-			Do.
Shanghai	May 25-31.-.....-	11	1	
Chosen:				British municipality.
Fusan..	May 1-31-......	1		
Colombis.-....	July 25-31.....-----	1		
Colombia: Barranquilla	Aug. 3-9.		1	
Cuba: Matanzas	Sept. 1-30.	1		
Czechoslovakia.				Apr. 1-June 30, 1924: Cases, 7;
Stato-				deaths, 2.
Boheraia	Apr. 1-Jane 30...-	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	2	
Denmark:				
Dominican Republic:	May 18-31.-	3	1	
La Romana.-...............-	Aug. 24-30........-	2		
Egypt:				
Alexandria	Juhe 4-10..........	1		
Do..	Sept. 3-9.....-...--	1		
Cairo--...-.-...-......-	Feb. 19-June 24---	163	45	
	Junc 25-Aug. 5...--	15	$\stackrel{2}{2}$	
Do..........	June 25-Sept. $9 . .-{ }^{\text {a }}$			

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FBVER-Continued.

Reports Received from June 28 to November 7, 1924-Continued.
gMALLPOX-Continued.

Place.	Date.	Cases.	Deaths.	Remarks.
France:				
Limoges	Apr. 1-May 31....		2	
Marseille....................-.	May 1-31 .-.......	2	1	
Gibraltar-	July 21-Sept. $21 .$.	8		
Great Britain: England and Wales.				May 26-June 28, 1924: Cases, 342.
Counties-				June 29-Oct.4, 1924: C'ases, 695.
Derby--...-.-...--	May 25-June 23...	159		
London..................	June 29-Aug. 30.	15		
Northumberiand.-.	May 25-June 28...	61		
D0.-.-.-.-.-.--	June 29-Oct. 4....	134		
Nottingham...-	May 25-June 28...	29		
Do-.....-	June 19-Oct. $4 .$.	103		
Yorks (North Rid-	May 25-June 28...	54		
Do.	June 29-Oct. 4.	118		
Yorks (West Rid-	May 25-June 28..	5		
ing.)				
Liverpooi.	Aug. 28...	1		Mild. Admitted toport hospital
Liverpoi--				from Lower Bebington district, 2 miles from docks.
Greece:		7	21	
Do.	June 30-Oct. 4		41	
Haiti: Port au Prince	July 6	2		Developed at Cape H
Hungary:				
Budapest.	July 20-Aug. 2...	11		
				Apr. 20-June 28, 1924: Cases, 28,396; deaths, 6,753.
Do..				June 29-Aug. 23, 1924: Cases,
Bombay	May 4-June 28.	432	${ }_{129}^{29}$	8,735; deaths, $2,228$.
Calcutta	June 29-Sept. $13 \ldots$	196 36	128 32	
Do.	July 6-Sept. $27 . .$.	78	63	
Karachi	May 18-June 28...	51	18	
Do-	June 29-Sept. 13..-	35	16	
Madras.	May 18-June 28...	32	10	
Do.	June 29-Sept. 20.	144	47	
Rangoon	May 11-June 28...	53	21	
Do..	June 29-Sept. 20..-	31	12	
Indo-China.... Province				Jan. 1-June 30, 1924: Cases, 4,034; deaths, $1,413$.
Anam.	June 1-30..	${ }^{23}$	2	June, 1923: Cases, 2.
Cambodia	-...-do.	35	21	June. 1923: Cases, 156.
Cochin-China	--.do-..........--	145	55	June, 1923: Cases, 70; deaths, 35.
Saigon.	Apr. 27-June 28...	145	79	Including 100 square kilometers
Tonkin.	June 29-Aug. 23...	$\begin{aligned} & 55 \\ & \mathbf{3 1} \end{aligned}$	23 2	Do. June, 1923: Cases, 18.
Bagdad	Apr. 20-May 24.	8	1	
Do.	July 27-Aug. 2-.--	1		
y: Messina	May 26-June 1....	1		
Jamaica.				June 1-28, 1924: Cases, 141; June
				29-Sept. 13, 1924: Cases, 217. (Reported as alastrim.)
Kingston.	June 1-28...........	6		Reported as alastrim.
Do.	June 29-Sept. 13..-	20		Do. 1021.
Japan.			-.---	July 1-31, 1924: Cases, 51; deaths,
Nagoya	June 8-14...........	2		1,693; deaths, 284.
Tokyo.	-..-do-.-...........-.	1		1,03, deathe 20.
Java:				
East Java-				
Madoera Residency Sampang	May 22.			Epidemic.
Malang -.-.-...-......	May 25-31-	5	1	
Pasoeroean Residency--	July 4-Sept. 2--.--	7		Epidemic in some localities.
Rembang	Aug. 23-Sept. 2....			Do.
Soerabaya. Do	Apr. 13-June 28..-	601	143 75	
West JavaBatavia.	May 31-June 27....	3		localitios.
	July 6-Aug. $22 . . .$.	3		Province.

CHOLERA, FLAGUE; SMALLPOX, TYPHUS .FEVER, AND YELEOW FEVER-Continued.

Reports Received fron Junc 28 to November 7, 1524—Continued.
 sMALLPOX-Continued.

Place.	Data.	Cases.	Deaths.	Remarks.
Latvis.				Apr. 1-June 30, 1924: Cases, 3; July 1-31, 1924: Case, 1.
Mexico:	June 1-30..		2	
DO.	Sept. 1-30..		1	
Guadalajara	May 1-June 30....	9	4	
Mexico City	May 4-June 28....-	9	1	Including municipalities in Fed-
				eral District.
$\begin{aligned} & \text { Do-..... } \\ & \text { Salina Cruz } \end{aligned}$	June 29-Sept. 20..-	72	1	
Salina Crue Tampico	May 14-20-.......-	2	1	
D0..	July 1-Aug. 20....	8	7	
Tuxtepec	July 3-18........-	3	1	State of Oaxaca.
${ }^{\text {Vera Cruz }}$	Sept. 21-Oct. 19...		2	
Palestine-............. Samaria Provinc				northern districts.
Samak..-.	May 27-June 2.-.-	1		
Paraguay: Asuncion.	June 2			Present.
Encarnacion	do			Many cases reported.
Persia: Bushire	June 1-30..........-	2		
Peru: ${ }_{\text {Arequipa }}$	Jan. 1-June 30..		5	
Poland.-..-				Mar. 30-June 28, 1924: Cases, 299;
Do..				deaths, 27. June 29-July 27, 1924: Cases, 25; deaths, 5.
Portugal: Lisbon.	May 25-June 28..-	7	2	
Do.	June 29-Sept. 28.-.	28	5	
Oporto	May 11-June 28.--	18	16	
Russia Do.	June 29-Oct. 11.	21	25	
Moscow	July 27-Aug. 9....-	37		Jan. 1-31, 1924: 2,243 cases.
Siam:	Apr. 27-June	3	5	
Spain:				
Barcelona				Year 1923: Cases, 160.
Cadiz	Jugust-September	23	2 5	
Do	July 1-Aug. 31.		77	
Madrid.	Aug. 1-31-........		1	Oct. 6, 1924: Increase in preva-
Malaga	June 29-Oct. 11.	8	57	lence reported.
Santander	Aug. 24-30....		4	
Valencia	June 8-21--------	3		
	July 13-Sept. $27 .-$	2	1	
Vigo. Straits Settlements	Aug. 17-23...		1	
Singapore.	May 4-24_-........-	2	1	
Sumatra: Medan	Jan. 1-31	5		
Switzerland:				
Berne...	May 25-June 28-..-	22		
Lncerne	June 29-Sept. 27-.-	13		
Lacerne. Syria:	Aug. 1-31,...-..--	12		
Damascus.	May 28-June 12..-	12		
Tunis. Do.	Aug. 7-13-.-.-..---	6		
Tunis.	May 27-June 30..-	17	4	
Do.	July 1-Oct. 6......-	12	17	
Turkey: Constantinople	June 1-7	1		
Do.......-.	Aug. 17-23....-...-	1		
Union of South Africa				Mar. 1-Junc 30, 1924: Cases,
				(white, 15; native, 152). July 1-31, 1924: 3 cases (white): 12
Cape Province.	May 4-31-........-			deaths (native). Outbreaks.
Do.-........	July 20-Aug. 23....			Do.
East London.	July 27-Aug. 2....-	1		
Orange Free 8tate	May 4-.........			Do.
Do....	Aug. 24-Sept. 13.--			Do.
Transvaal.	May 4-31--......			No
Johannesburg	July 20-Aug. 23....			Do.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued.

Reports Received from June 28 to November 7, 1924-Continued.
 sMALLPOX-Continued.

TYPHUS FEVER.

Cholera, plague, smallpox, typhus fever, and yellow FEVER-Continued.

Reports Received from June 28 to November 7, 1924—Continued.
TYPHUS FEVER-Continued.

Place.	Date	Cases.	Deaths.	Remarks.
Mexico:				Including municipalities in Federal District. Do.
Durango....	May 1-June 30....	2	2	
Mexico City.	May 4-June 28...-	59		
Do.	June 29-Sept. 20..	93		
Torreon.	July 1-Aug. 31.		4	
Palestine:				
Jaffa-	June 17-23......	1		
Do.	July 8-Aug. 25-...	2		
Jerusalem	July 1-Sept. 8...-	6		
Kantara	July 15-21........	1		
Khulde -	Aug. 17-1-	1		
Safad...	Aug. 19-25......	1		
Do.	July 1-Aug. 31..		3	
Poland....				Mar. 30-June 28, 1924: Cases, 2,947; deaths, 277.
Do..				June 29-July 27, 1924: Cases, 332; deaths, 23.
Portugal:				
	June 15-21.			Jan. 1-31, 1924: Cases, 14,275.
Moscow-....-......-.-.....-- July 27-Aug. 9				
Spain:				
Barcelona Malaga.	Sept.6-0ct. 11		2	
Aleppo..	June 8-14.	1	.--	
Damascus--------...------- July 14-20				
'Turkey: Constantinople.	May 18-June 21.-July 6-Sept. 13....	${ }^{7}$	2 13	
Union of South Africa				Mar. 1-June 30, 1924: Cases, 418;
				deaths, 45. July 1-Aug. 31, 1924: Cases, 212; deaths, 31. (Colored, 203 cases; white, 9 cases.)
Cape Province.				Mar. 1-June 30, 1924: Cases, 249; deaths, 23.
Do.				July 1-Aug. 31, 1924: Cases, 122; deaths, 16.
Natal				Mar. 1-June 30, 1924: Cases, 27;
Durban	Apr. 20-June 8....	2		deaths, 5. July 1-Aug. 31, 1924: Cases, 12; deaths, 1 (colored).
Orange Free State.				Mar. 1-June 30, 1924: Cases, 83;
				deaths, 11. July 1-Aug. 31, 1924: Cases, 40; deaths, 12.
				Aug. 24-30: Outbreaks in the
				Hoopstad district. ${ }^{\text {a }}$, 39 .
Transvaal..................-				
Johannesburg	May 11-24........	$\stackrel{2}{3}$		deaths, 5. July 1-Aug. 31, 1924: Cases. 29 (colored);
Do.....--	June 29-Sept. 13...			deaths, 2. Aug. 17-23, 1924:
				Outbreaks. 1024. Cases, 252.
Yugoslavia				January-June, 1924: Cases, 252; deaths, 14.
Zagreb	Sept. 7-13.......--	1		

YELLOW FEVER.

[^0]: ${ }^{1}$ Lighting of Post Offices-Summary of a report made by the Office of Industrial Hygiene and Sanitation of the United States Public Health Service at the request of Postmaster General Eubert Wort, 1g2e. Government Printing Office, Washington, 1923.
 ${ }^{2}$ See Public Health Bulletin No. 140.

[^1]: ${ }^{3}$ Farmer, Adams, and Stephenson: An investigation in a coal mine (II), Journal of the National Institute of Industrial Psychology, vol. 1, pages 173-181, 1923.

[^2]: - As to the deterrent effect of glare, see Keport of the Industrial Fatigue Research Board of the Medical Research Council of Great Britain, No. 20, p. 21, 1922.

[^3]: b Equation for the rise of an electric current in the field coils of an electromagnet.
 6 Equation for the increase of the velocity of a railroad train under the constant pull of an engine.

[^4]: ${ }^{7}$ Reprint No. 499, from Public Health Reports, Jan. 24, 1919.
 ${ }^{8}$ First Report of the Departmental Committee on Lighting in Factories and Workshops, vol. 1. H. M. Stationery Office, London, 1015.

[^5]: © Public Health Bulletin No. 140.

[^6]: ${ }^{10}$ The tests under these three illuminations were made with the same lighting units, the wattage of the lamps within the units only being varied.
 ${ }^{11}$ Trans. Illum. Eng. Soc., 18, 787-800, 1923.
 12 Ueber den Beleuchtungswerth der Lampenglocken, Wiesbaden, 1885, pp. 70-72.
 ${ }^{13}$ Trans Illum. Eng. Soc., 15, 769-801, 1920; 17, 69-102, 1922.
 ${ }^{14}$ Jour. Franklin Institute, December, 1921.
 ${ }^{15}$ Trans. Illum. Eng. Soc., 19, 150-175, 1924.

[^7]: Deaths from all causes in certain large cities of the United States during the week ended November 1, 1924, infant mortality, annual death rate, and comparison with corresponding week of 192s. (From the Weekly Health Index, November 4, 1924, issued by the Bureau of the Census, Department of Commerce.)

[^8]: ${ }^{1}$ Population Jan. 1, 1920.

[^9]: ${ }^{1}$ Figures for Barre, Vt., estimated. Report not received at time of going to press.
 ${ }^{2}$ Figures for Cleveland, Ohio, estimated.
 ${ }^{2}$ Figures for Superior, Wis., estimated.
 4 Figures for Raleigh, N. C., estimated.
 ${ }^{6}$ Figures for Wilmington, Del., and Tampa, Fla., estimated.

 - Corrected figure.

[^10]: ${ }^{\prime}$ ' Figures for Barre, Vt., estimated. Report not received at time of going to press.
 ${ }^{2}$ Figures for Cleveland, Ohio, estimated.
 ${ }^{2}$ Figures for Superior, Wis., estimated.
 ; Figures for Raleigh, N. C., estimated.

 - Figures for Wilmington, Del., and Tampa, Fla., estimated.

[^11]: ${ }^{1}$ Greatest prevalence of plague was reported for the month of March; age period most affected was stated to be between 10 and 15 years; as regards race, the Hindu was stated to have been most affected. The total number of deaths from all causes was 11,918; population, 351,691 .

[^12]: ${ }^{1}$ From medical officers of the Public Health Service, American consuls, and other sources.

[^13]: ${ }^{1}$ From medical officers of the Public Health Service, American consuls, and other sources.

